Skip to main content
Log in

Electrophysiology of cell volume regulation in proximal tubules of the mouse kidney

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The present study has been designed to test for the influence of cell swelling on the potential difference and conductive properties of the basolateral cell membrane in isolated perfused proximal tubules. During control conditions the potential difference across the basolateral cell membrane (PDbl) is −65±1 mV (n=74). Decrease of peritubular osmolarity by 80 mosmol/l depolarizes the basolateral cell membrane by +7.8±0.5 mV (n=42). An increase of bath potassium concentration from 5 to 20 mmol/l depolarizes the basolateral cell membrane by +25±1 mV (n=11), an increase of bath bicarbonate concentration from 20 to 60 mmol/l hyperpolarizes the basolateral cell membrane by −3.2±0.5 mV (n=13). A decrease of bath chloride concentration from 79.6 to 27 mmol/l hyperpolarizes the basolateral cell membrane by −1.8±0.7 mV (n=6). During reduced bath osmolarity, the influence of altered bath potassium concentration on PDbl is decreased (Δ PDbl=+16±2 mV,n=11), the influence of altered bicarbonate concentration on PDbl is increased (Δ PDbl=−6.0±0.8 mV,n=13), and the influence of altered bath chloride concentration on PDbl is unaffected (Δ PDbl=−1.8±0.6 mV,n=6). Barium depolarizes the basolateral cell membrane to −28±2 mV (n=16). In the presence of 1 mmol/l barium, decrease of peritubular osmolarity by 80 mosmol/l leads to a transient hyperpolarization of the basolateral cell membrane by −5.9±0.5 mV (n=16). This transient hyperpolarization is blunted in the absence of extracellular bicarbonate. In conclusion, cell swelling depolarizes straight proximal tubule cells and increases bicarbonate selectivity of the basolateral cell membrane at the expense of potassium selectivity. The data reflect either incrases of bicarbonate conductance or decrease of potassium conductance during exposure of proximal tubule cells to hypotonic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bello-Reuss E (1982) Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. J Physiol 326:49–63

    Google Scholar 

  2. Biagi B, Kubota T, Sohtell M, Giebisch G (1981) Intracellular potentials in rabbit proximal tubules perfused in vitro. Am J Physiol 240:F200-F210

    Google Scholar 

  3. Biagi B, Sohtell M, Giebisch G (1981) Intracellular potassium activity in the rabbit proximal straight tubule. Am J Physiol 241:F677-F686

    Google Scholar 

  4. Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3-transport. J Gen Physiol 81:53–94

    Google Scholar 

  5. Burckhardt B-C, Sato K, Frömter E (1984) Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. I. Basic observations. Pflügers Arch 401:34–42

    Google Scholar 

  6. Burckhardt B-C, Cassola AC, Frömter E (1984) Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. II. Exclusion of HCO3-effects on other ion permeabilities and of coupled electroneutral HCO3-transport. Pflügers Arch 401:43–51

    Google Scholar 

  7. Burg M, Grantham J, Abramov M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Physiol 210:1293–1298

    Google Scholar 

  8. Cala PM (1980) Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol 76:683–708

    Google Scholar 

  9. Cassola AC, Mollenhauer M, Frömter E (1983) The intracellular chloride activity of rat kidney proximal tubular cells. Pflügers Arch 399:259–265

    Google Scholar 

  10. Dellasega M, Grantham JJ (1973) Regulation of renal tubule cell volume in hypotonic media. Am J Physiol 224:1288–1294

    Google Scholar 

  11. Gagnon J, Ouimet D, Nguyen H, Laprade R, Le Grimellec C, Carrière S, Cardinal J (1982) Cell volume regulation in the proximal convoluted tubule. Am J Physiol 243:F408-F415

    Google Scholar 

  12. Grantham JJ, Lowe CM, Dellasega M, Cole BR (1977) Effect of hypotonic medium on K and Na content of proximal renal tubules. Am J Physiol 232:F42-F49

    Google Scholar 

  13. Greger R, Hampel W (1981) A modified system for in vitro perfusion of isolated renal tubules. Pflügers Arch 389:175–176

    Google Scholar 

  14. Grinstein S, Rothstein A, Sarkadi B, Gelfand EW (1984) Responses of lymphocytes to anisotonic media: Volume-regulating behavior. Am J Physiol 246:C204-C215

    Google Scholar 

  15. Gstrein E, Paulmichl M, Lang F (1987) Electrical properties of Ehrlich ascites tumor cells. Pflügers Arch 408:432–437

    Google Scholar 

  16. Hoffmann EK, Simonsen LO, Lambert IH (1984) Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+. J Membr Biol 78:211–222

    Google Scholar 

  17. Kirk KL, Schafer JA, DiBona DR (1987) Cell volume regulation in rabbit proximal straight tubule perfused in vitro. Am J Physiol 252:F922-F932

    Google Scholar 

  18. Kirk KL, DiBona DR, Schafer JA (1987) Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of cell K+. Am J Physiol 252:F933-F942

    Google Scholar 

  19. Kregenow FM (1981) Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media. Annu Rev Physiol 43:493–505

    Google Scholar 

  20. Kristensen LO, Folke M (1984) Volume-regulatory K+ efflux during concentrative uptake of alnine in isolated rat hepatocytes. Biochem J 221:265–268

    Google Scholar 

  21. Lang F, Paulmichl M, Völkl H, Gstrein E, Friedrich F (1987) Electrophysiology of cell volume regulation. In: Kovacevic Z, Guder WG (eds) Molecular nephrology: Biochemical aspects of kidney function. de Gruyter. Berlin New York, pp 133–139

    Google Scholar 

  22. Larson M, Spring KR (1984) Volume regulation by Necturus gallbladder: Basolateral KCl exit. J Membr Biol 81:219–232

    Google Scholar 

  23. Lau KR, Hudson RL, Schultz SG (1984) Cell swelling increases a barium-inhibitable potassium conductance in the basolateral membrane of Necturus small intestine. Proc Natl Acad Sci USA 81:3591–3594

    Google Scholar 

  24. Linshaw MA, Grantham JJ (1980) Effect of collagenase and ouabain on renal cell volume in hypotonic media. Am J Physiol 238:F491-F498

    Google Scholar 

  25. Lohr JW, Grantham JJ (1986) Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J Clin Invest 78:1165–1172

    Google Scholar 

  26. Messner G, Wang W, Paulmichl M, Oberleithner H, Lang F (1985) Ouabain decreases apparent potassium-conductance in proximal tubules of the amphibian kidney. Pflügers Arch 404:131–137

    Google Scholar 

  27. Messner G, Stulnig G, Rehwald W, Lang F (1986) Influence of potassium depletion on potassium conductance in proximal tubules of frog kidney. Pflügers Arch 407:153–157

    Google Scholar 

  28. Paillard M, Leviel F, Gardin J-P (1979) Regulation of cell volume in separated renal tubules incubated in hypotonic medium. Am J Physiol 236:F226-F231

    Google Scholar 

  29. Paulmichl M, Gstraunthaler G, Lang F (1985) Electrical properties of Madin-Darby canine kidney cells. Effects of extracellular potassium und bicarbonate. Pflügers Arch 405:102–107

    Google Scholar 

  30. Siebens AW, Kregenow FM (1985) Volume-regulatory responses of Amphiuma red cells in anisotonic media. The effect of amiloride. J Gen Physiol 86:527–564

    Google Scholar 

  31. Simmons NL (1984) Epithelial cell volume regulation in hypotonic fluids: studies using a model tissue culture renal epithelial cell system. Q J Exp Physiol 69:83–95

    Google Scholar 

  32. Spring KR, Ericson A-C (1982) Epithelial cell volume modulation and regulation. J Membr Biol 69:167–176

    Google Scholar 

  33. Ussing HH (1986) Epithelial cell volume regulation illustrated by experiments in frog skin. Renal Physiol 9:38–46

    Google Scholar 

  34. Völkl H, Lang F (1988) Ionic requirement for regulatory cell volume decrease in renal straight proximal tubules. Pflügers Arch (in press)

  35. Völkl H, Geibel J, Greger R, Lang F (1986) Effects of ouabain and temperature on cell membrane potentials in isolated perfused straight proximal tubules of the mouse kidney. Pflügers Arch 407:252–257

    Google Scholar 

  36. Welling PA, Linshaw MA, Sullivan LP (1985) Effect of barium on cell volume regulation in rabbit proximal straight tubules. Am J Physiol 249:F20-F27

    Google Scholar 

  37. Whittembury G, Grantham JJ (1976) Cellular aspects of renal sodium transport and cell volume regulation. Kidney Int 9:103–120

    Google Scholar 

  38. Yoshitomi K, Burckhardt B-C, Frömter E (1985) Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflügers Arch 405:360–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Völkl, H., Lang, F. Electrophysiology of cell volume regulation in proximal tubules of the mouse kidney. Pflugers Arch. 411, 514–519 (1988). https://doi.org/10.1007/BF00582372

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582372

Key words

Navigation