Skip to main content
Log in

Maitotoxin (MTX) activates a nonselective cation channel in Xenopus laevis oocytes

  • Original Article
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

 Maitotoxin (MTX) may exert its toxic effect by activating ion conductances and has been shown to elicit a fertilization-like response in Xenopus laevis oocytes. In the present study we investigated the electrophysiological response of stage V–VI Xenopus oocytes to MTX using the two-microelectrode voltage-clamp technique. Membrane voltage (V m) measurements demonstrated that MTX (50 pM to 1 nM) depolarized the oocytes from –49±7 to –14±1 mV. Subsequent replacement of bath Na+ by the impermeant cation NMDG (N-methyl-d-glucamine) shifted V m from –14±1 to –53±5 mV (n=29). This indicates that MTX activates a cation conductance. Indeed, current measurements at a holding potential of –60 or –100 mV showed that within 10 s of MTX application an inward current component developed which was largely abolished by extracellular Na+ removal. After a 1-min application of 1 nM MTX the NMDG-sensitive current increased more than 100-fold from 0.14±0.03 μA to a peak value of 21±3 μA (n=11). The effect of MTX was concentration dependent with an EC50 of about 250 pM but only slowly reversible. Ion substitution experiments indicated that the stimulated conductance was nonselective for monovalent cations with a slight preference for NH4 + (2.1) > K+ (1.5) > Na+ (1.0) > Li+ (0.7). Regarding divalent cations, a complex biphasic response to extracellular Na+ replacement by Ca2+ was observed, which suggests that the stimulated channels may have a small Ca2+ permeability but that exposure to high extracellular Ca2+ enhances recovery from MTX stimulation. No significant conductance for Mn2+ was observed. Application of 1 mM benzamil, 1 mM amiloride, or 100 μM 1-(β-[3-(4-Methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride (SK&F 96365) reduced the MTX-stimulated inward current by 81%, 62%, or 65%, respectively. Gd3+ had an inhibitory effect of 29% and 38% at concentrations of 10 μM or 100 μM, respectively. Flufenamic acid, niflumic acid, (RS)-(3,4-dihydro-6,7-dimethoxyisoquinoline-1-γ1)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxyphenyl)-ethyl]-acetamide (LOE908), and 3′,5′-dichlorodiphenylamine-2-carboxylic acid (DCDPC), known blockers of other nonselective cation channels, had no significant effect. We conclude that MTX activates a nonselective cation conductance in Xenopus oocytes. The underlying channels may be involved in changes in V m that occur during the early stages of fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 30 December 1997 / Received after revision and accepted: 17 March 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielfeld-Ackermann, A., Range, C. & Korbmacher, C. Maitotoxin (MTX) activates a nonselective cation channel in Xenopus laevis oocytes. Pflügers Arch 436, 329–337 (1998). https://doi.org/10.1007/PL00008085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00008085

Navigation