Skip to main content
Log in

Oxygen and/or glucose limitation in a chemostat culture of Candida utilis mathematical model identification

  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The glucose and/or dissolved oxygen limited continuous culture of yeast Candida utilis was studied. Six different mathematical models were designed to describe and analyze the experiments. The model considering the production of surface active compounds at autoanaerobic conditions and dissolved oxygen consumption for nongrowth associated exogeneous respiration yields the best fit. The results may be applied for aerobic waste water treatment plants, process analysis and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b, c :

coefficients in Eq. (26)

cetg/l:

ethanol steady state concentration

d g/l:

density

D 1/h:

dilution rate

D0 m:

characteristic dimension in Eq. (26)

E :

enhancement factor defined by Eq. (23)

h m:

height of absorption apparatus in Eq. (26)

k, k′ :

constants

k″ Pa:

constant

k1 l/g:

constant

k2 1/h:

constant

kal/g:

adsorption rate constant

K F :

partition coefficient defined by Eq. (16)

kLa 1/h:

aeration capacity of a fermenter

kLaet1/h:

aeration capacity in the presence of ethanol

KIg/l:

inhibition constant

KOimg/l:

inhibition constant

Komg/l:

half-saturation constant for oxygen

KSg/l:

half-saturation constant for substrate

KS1 g/l:

half-saturation constant for substrate S 1

K S2 :

g/l half-saturation constant for substrate S 2

mO1/h:

maintenance coefficient for oxygen

mS1/h:

maintenance coefficient for sugar

O mg/l:

dissolved oxygen steady state concentration

Omg/l:

oxygen solubility

O et mg/l:

oxygen solubility in the presence of ethanol

OTR mg/(hl):

oxygen transfer rate

OTRet mg/(hl):

ox. transf. rate in the presence of ethanol

qE1/h:

specific rate of ethanol production

S g/l:

substrate steady state concentration

S0 g/l:

inlet substrate concentration

S1 g/l:

first limiting substrate

S2 g/l:

second limiting substrate

X g/l:

biomass steady state concentration

XGg/l:

biomass concentration at the interface

XTg/l:

total biomass concentration

Y S/X :

substrate/biomass yield coefficient

Y O/X :

oxygen/biomass yield coefficient

μ 1/h:

specific growth rate

μG1/h:

specific growth rate at the interface

μL1/h:

specific growth rate in the liquid phase

σ Pa:

surface tension

σetPa:

surface tension for ethanol

σwPa:

surface tension for water (medium)

References

  1. Bader, F.G.: Analysis of double-substrate limited growth. Biotechnol. Bioeng. 20 (1978) 183–202

    Article  CAS  Google Scholar 

  2. Barford, J.P.: A general model for aerobic yeast growth: batch growth. Biotech. Bioeng. 35 (1990) 907–920

    Article  CAS  Google Scholar 

  3. Bennett, G.F.; Kempe, L.L.: Oxygen transfer mechanisms in the gluconic acid fermentation. Biotechnol. Bioeng. 6 (1964) 347–362.

    Article  CAS  Google Scholar 

  4. Branham, R.L.: Iteratively reweighted least squares. In: Scientific data analysis, pp. 115–119. New York: Springer 1990

    Google Scholar 

  5. Cail, R.; Rickard, P.A.D.; Rogers, P.L.: Maximization of Candida utilis cytochromes by pulse addition of ethanol to continuous cultivations. Biotechnol. Bioeng. 21 (1979) 803–820

    Article  CAS  Google Scholar 

  6. Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem 20 (1956) 350–356

    Article  Google Scholar 

  7. Dussap, C.G.; De Vita, D.; Pons, A.: Structured modeling of a microbial system: I.A. theoretical study of lactic acid fermentation. Biotechnol. Bioeng. 30 (1991) 1–10

    Google Scholar 

  8. Greenhalgh, S.H.; McManamey, W.J.; Porter, K.E.: Comparison of oxygen mass transfer into sodium sulfite solution and a biological system. J. Appl. Chem. Biotechnol. 25 (1975) 143–159

    Article  CAS  Google Scholar 

  9. Haughney, H.A.; Nauman, E.B.: A bioenergetic model of a mixed production fermentation. Biotechnol. Bioeng. 36 (1990) 142–148

    Article  CAS  Google Scholar 

  10. Herbert, D.; Elsworth, R.; Telling, R.C.: The continuous culture of bacteria; a theoretical and experimental study. J. Gen. Microbiol. 14 (1956) 601–622

    CAS  Google Scholar 

  11. Herbert, D.: Continuous culture of microorganism: some theoretical aspects. In: Málek, I. (Ed.): Continuous cultivation of microorganisms; a symposium, pp. 45–52. Prague: Academic Press 1958

    Google Scholar 

  12. Holodniok, M.; Kl'ič, A.; Kub'iček, M.; Marek, M.: The dependence of steady state solutions on a parameter. In: The methods of the analysis of nonlinear dynamic models (In Czech), pp. 190–202. Prague: Academia Press 1986

    Google Scholar 

  13. Howell, J.A.; Atkinson, B.: Influence of oxygen and substrate concentrations on the ideal film thickness and the maximum overall substrate uptake rate in microbial film fermenters. Biotechnol. Bioeng. 10 (1976) 15–35

    Article  Google Scholar 

  14. Ivanov, V.I.; Stabnikova, E.V.: Stoichiometry and economics of microbial processes (In Russian), p. 38. Kiev: Naukova dumka 1987

    Google Scholar 

  15. Junker, B.H.; Hatton, T.A.; Wang, D.I.C.: Oxygen transfer enhancement in aqueoes/Perfluorocarbon fermentation systems: I. experimental observations. Biotechnol. Bioeng. 35 (1990) 578–585

    Article  CAS  Google Scholar 

  16. Mahler, H.R.; Cordes, E.D.: Biological Chemistry. New York: Harper and Row 1966

    Google Scholar 

  17. Marr, A.G.; Nilson, E.H.; Clark, D.J.: The maintenance requirement of Escherichia coli. Ann. N.Y. Acad. Sci. 102 (1963) 536–548

    CAS  Google Scholar 

  18. McGrew, S.F.; Mallette, M.F.: Energy of maintanence in Escherichia coli. J. Bacteriol. 83 (1962) 844–850

    CAS  Google Scholar 

  19. Monod, J.: Recherches sur la croissance des cultures bacteriennes. Paris: Hermann et Cie 1942

    Google Scholar 

  20. Moser, A.: Endogenous metabolism. In: The bioprocess technics (In German), pp. 144–146. Wien: Springer Verlag 1981

    Google Scholar 

  21. Moss, F.J.; Rickard, P.A.D.; Beech, G.A.; Bush, P.E.: The response by microorgansims to steady state growth in controlled concentrations of oxygen and glucose. I. Candida utilis. Biotech. Bioeng. 11 (1969) 561–580

    Article  CAS  Google Scholar 

  22. Muchlenova, I.P.; Tarata, E.J.: Foam Regime and Foam Apparatuses (In Russian), p. 128. Leningrad 1977

  23. Páca, J.; Kujan, P.: Effect of failure of aeration during continuous biomass production of sulfite liquor. Folia Microbiol. 34 (1989) 49–57

    Google Scholar 

  24. Páca, J.; Votruba, J.: Effect of external pH on acidification and excretion of ethanol intermediates by Candida utilis. Folia Microbiol. 36 (1991) 478–484

    Google Scholar 

  25. Patlak, S.J.: Energy expenditure by active transport mechanisms. Biophys. J. 1 (1957) 419–427

    Article  Google Scholar 

  26. Pirt S.J.: The maintenance energy of bacteria in growing cultures. Proc. R. Soc. B 163 (1965) 224–231

    Article  Google Scholar 

  27. Popovic, M.; Niebelschuetz, H.; Reuss, M.: Oxygen solubilities in fermentation fluids. Europ. J. Appl. Microbiol. Biotechnol. 8 (1979) 1–15

    Article  CAS  Google Scholar 

  28. Postma, E.; Kuiper, A.; Tomasouw, W.F.; Scheffers, W.A.; Van Dijken, J.P.: Competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis. Appl. Environ. Microbiol. 55 (1989) 3214–3220

    CAS  Google Scholar 

  29. Quicker, G.; Schumpe, A.; Koenig, B.; Deckwer, W.D.: Comparison of measured and calculated oxygen solubilities in fermentation media. Biotechnol. Bioeng. 23 (1981) 635–650

    Article  CAS  Google Scholar 

  30. Reisman, H.B.: Economic analysis of fermentation processes. Boca Raton, Florida: CRC Press 1988

    Google Scholar 

  31. Ryder, D.N.; Sinclair, C.G.: Model for the growth of aerobic microorganisms under oxygen limiting conditions. Biotechnol. Bioeng. 14 (1972) 787–792

    Article  CAS  Google Scholar 

  32. Schulze, K.L.; Lipe, R.S.: Relationship between substrate concentration, growth rate and respiration rate of Escherichia coli in continuous culture. Arch. Mikrobiol. 48 (1964) 1–20

    Article  Google Scholar 

  33. Schwippel, J.; Votruba, J.: Identification of mathematical models of complex cultures of microorgansims in continuous cultivation — numerical approach. Folia Microbiol. 37 (1992) 427–432

    CAS  Google Scholar 

  34. Schwippel, J.; Votruba, J.: Method for computer simulation of complex continuous cultivation of microorganisms. Folia Microbiol. 38 (1993) 311–319

    Google Scholar 

  35. Sherris, J.C.; Preston, N.W.; Shoesmith, J.G.: The influence of oxygen and arginine on the motility of a strain of Pseudomonas sp. J. Gen. Microbiol. 16 (1957) 86–96

    CAS  Google Scholar 

  36. Siegell, S.D.; Gaden, E.D.: Automatic controle of dissolved oxygen levels in fermentations. Biotechnol. Bioeng. 4 (1962) 345–356

    Article  CAS  Google Scholar 

  37. Sinclair, C.G.; Ryder, D.N.: Models for the continuous cultivation of microorganisms under both oxygen and carbon source limitation conditions. Biotechnol. Bioeng. 17 (1975) 375–398

    Article  CAS  Google Scholar 

  38. Sobotka, M.; Votruba, J.; Prokop, A.: A two-phase oxygen uptake model of aerobic fermentations. Biotechnol. Bioeng. 23 (1981) 1193–1202

    Article  CAS  Google Scholar 

  39. Tsao, G.T.: Simultaneous gas-liquid interfacial oxygen absorption and biochemical oxidation. Biotechnol. Bioeng. 10 (1968) 765–785

    Article  CAS  Google Scholar 

  40. Tsao, G.T.: Oxygen adsorption in microbiological systems of zero order reaction rate. Biotechnol. Bioeng. 12 (1970) 51–61

    Article  CAS  Google Scholar 

  41. Volesky, B.; Votruba, J.: Kinetics of simple processes. In: Modeling and optimization of fermentation processes, pp. 11–17. Amsterdam: Elsevier 1992

    Google Scholar 

  42. Votruba, J.; Sobotka, M.: Physiological similarity and bioreactor scale-up. Folia Microbiol. 37 (1992) 331–345

    CAS  Google Scholar 

  43. Vraná, D.; Panoš, J.; Votruba, J.: Production of ethanol by the yeast Candida utilis under autoanaerobic condition. Folia Microbiol. 34 (1989) 542–544

    Google Scholar 

  44. Weast, R.C. (Ed.): CRC Handboodk of chemistry and physics. 67th edition, p.F-32. Boca Raton, Florida: CRC Press 1986

    Google Scholar 

  45. Zieminski, S.A.; Goodwin, C.C.; Hill, R.L.: Effect of some organical substances on oxygen transfer. Tappi 43 (1960) 1029–1035

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwippel, J., Votruba, J. Oxygen and/or glucose limitation in a chemostat culture of Candida utilis mathematical model identification. Bioprocess Eng. 13, 133–140 (1995). https://doi.org/10.1007/BF00369696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369696

Keywords

Navigation