Skip to main content
Log in

Influence of sulfates and operational parameters on volatile fatty acids concentration profile in acidogenic phase

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Anaerobic treatment of distillery wastewaters containing high sulfate concentrations was carried out on a two-phase process. The acidogenic phase was operated so as to produce the more favourable intermediates for methanogenic bacteria coupled with maximum sulfate removal. Sulfate removal was directly affected by pH and dilution rate (D). The maximum sulfate removal and acetic acid production was achieved at pH 6.6 and D=0.035 h−1. A linear relationship between acetic acid produced and sulfate removal was observed, indicating that acetic acid was mainly produced by sulfate reducing bacteria with important operational advantages. Higher concentrations of butyric acid were obtained at low pH values and high dilution rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lettinga, G. J.; Van Velsen, A. F. M.; Hobma, S. W.; de Zeeuw, W.; Klapwijk, A.: Use of the upflow sludge blanket (UASB) reactor concept for biological wastewater treatment especially for anaerobic treatment. Biotechnol. Bioeng. 22 (1980) 699–734

    Google Scholar 

  2. Zeikus, J. G.: Microbial population in digesters. In: Statford, D. (Ed.): Proc. First Int. Symp. on Anaerobic Digestion. Cardiff: A. D. Scientific Press 1980

    Google Scholar 

  3. Gosh, S.; Conrad, J. R. L.; Kloss, L.: Anaerobic acidogenesis of wastewater sludge. J. Water Pollut. Control Fed. 47 (1985) 30–45

    Google Scholar 

  4. Pohland, F. G.; Gosh, S.: Developments in anaerobic stabilization of organic wastes. The two-phase concept. Environ. Lett 1 (1971) 255–266

    Google Scholar 

  5. Aivasidis, A.; Wandrey, C.; Hilla, E.: Studies on reaction techniques concerning reactor design for the anaerobic degradation of complex substrates with the example of the methanation of effluents in fermentation industry. Bioprocess Eng. 4 (1989) 63–74

    Google Scholar 

  6. Henze, M.; Harremoes, P.: Literature review in anaerobic treatment of wastewater in fixed film reactors. Water Sci. Tech. 15 (8/9) (1983) 2–102

    Google Scholar 

  7. Reis, M. A. M.; Gonçalves, L. M. D.; Carrondo, M. J. T.: Sulfate reduction in acidogenic phase anaerobic digestion. Water Sci. Tech. 20 (11/12) (1988) 345–351

    Google Scholar 

  8. Nanninga, H. J.; Gottschall, J. C.: Anaerobic purification of wastewater from a potato-starch producing factory. Water Res. 20 (1986): 97–103

    Google Scholar 

  9. Schönheit, P.; Kristjanson, J. K.; Thauer, R. K.: Kinetic mechanism for the ability of sulfate reducers to out-compete methanogenic for acetate. Arch. Microbiol. 132 (1982) 285–288

    Google Scholar 

  10. Koster, I. W.; Rinzema, A.; de Vegt, A. L.; Lettinga, G.: Sulfide inhibition of the methanogenic activity of granular sludge at various pH levels. Water Res. 20 (12) (1986) 1561–1567

    Google Scholar 

  11. Dinopoulou, G.; Rudd, T.; Lester, J. N.: Anaerobic acidogenesis of a complex wastewater: I. The influence of operational parameters on reactor performance. Biotechnol. Bioeng. 31 (1988) 958–968

    Google Scholar 

  12. Bories, A.: Fermentation methanique avec séparation des phases acidogéne et methanogéne appliquée au traitement des effluents à fort charge polluant (destilleries). Ann. Technol. Agric 29 (3) 509–528

  13. Zoetemeyer, R. J.; Van den Heuvel, J. C.; Cohen, A.: pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 16 (1982) 303–311

    Google Scholar 

  14. Zoetemeyer, R. J.; Matthijsen, A. J. C. M.; Van den Heuvel, J. C.; Cohen, A.; Boelhouver, C.: Anaerobic acidification of glucose in an upflow reactor. Trib. Cebedeau 455 (34) (1981) 443–450

    Google Scholar 

  15. Andrews, J. F.; Pearson, G. A.: Kinetics and characteristics of volatile acid production in anaerobic fermentation process. Int. J. Air Water Pollut. 9 (1965) 439–461

    Google Scholar 

  16. Zeikus, J. G.: The biology of methanogenic bacteria. Bacteriol Rev. 41 (1977) 514–541

    Google Scholar 

  17. Thauer, R. K.; Jungermann, K.; Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev 41 (1) (1977) 100–180

    Google Scholar 

  18. Verstraete, W.; de Baere, L.; Rozzi, A.: Phase separation in anaerobic digestion: motives and methods. Trib. Cebedeau 34 (1981) 367–375

    Google Scholar 

  19. Boone, D. R.; Bryant, M. P.: Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40 (1980) 626–632

    Google Scholar 

  20. McInerney, M. J.; Bryant, M. P.; Hespell, R. B.; Costerton, J. W.: Syntrophomonas Wolfei gen. nov. sp. nov: an anaerobic synthrophic, fatty acids-oxidazing bacterium. Appl. Environ. Microbiol. 41 (4) (1981) 1029–1039

    Google Scholar 

  21. Widell, F.: Microbiology and ecology of sulfate and sulfur-reducing bacteria. In: Zehnder, A. J. B. (Ed.): Environmental microbiology of anaerobes, 469–585. New York: John Wiley and Sons (1988)

    Google Scholar 

  22. Postgate, J. R.: The sulfate-reducing bacteria. Cambridge: Cambridge University Press 1984

    Google Scholar 

  23. Gil Pena, M. L.; Sardinero, E.; Garcia Serrano, P.; Schnabel, I.; Garrido, J.: Continuous production of volatile fatty acids by acidogenesis of sugar beet vinasse. Environ. Technol. Letter 7 (1986) 479–486

    Google Scholar 

  24. Lebel, A.; Donascimento, H. C. G.; Yven, T. F.: Molasses promoted biological sulphur recovery from high sulphates wastes. Proc. 40th. Ind. Waste Conf. West Lafayette. (1985)

  25. Laroche, M.: Metabolisme intermediare des acides gras volatiles en fermentation methanique. PhD Thesis (INSA), Toulose, 1983.

    Google Scholar 

  26. Reis, M. A. M.; Gonçalves, L. M. D.; Carrondo, M. J. T.: Sulfate removal in acidogenic phase anaerobic digestion. Environ. Technol. Lett. 9 (1988) 775–784

    Google Scholar 

  27. Henderson, M. H.; Steedman, T. A.: Analyses of C2-C6 monocarboxilic acids in aqueous solution using gas chromatography. Chromat 14 (1982) 945–954

    Google Scholar 

  28. Standard method for the examination of water and wastewater (1975), vol. I. American Public Health Association, 14th ed., Washington.

  29. Hauser, J. Y.; Holder, G. A.: Iron availability in mixed cultures of sulfate-reducing bacteria. Biotechnol. Bioeng. 28 (1986) 101–106

    Google Scholar 

  30. Reis, M. A. M.; Lemos, P. C.; Almeida, J. S.; Carrondo, M. J. T.: Influence of produced acetic acid on growth of sulfate reducing bacteria. Biotechnol. Letters. 12(2) (1990) 145–148

    Google Scholar 

  31. Hilton, M. G.; Archer, D. B.: Anaerobic digestion of sulfate-rich molasses wastewater: inhibition of hydrogen sulfide production. Biotechnol. Bioeng. 31 (1988) 885–888

    Google Scholar 

  32. Mehta, K. I.; Callihan, C. D.: Production of protein and fatty acids in the anaerobic fermentation of molasses by E. Ruminantium. J. Am. Oil Chem Soc. 61 (11) (1984) 1728–1734

    Google Scholar 

  33. Segers, L.; Verstringe, L.; Verstraete, W.: Product patterns of non-axenic sucrose fermentation as a function of pH. Biotechnol. Letters 3 (11) (1981) 655–640

    Google Scholar 

  34. Rogers, P. L.; Bramall, L.; McDonald, I. J.: Kinetic analysis of batch and continuous culture of Streptococcus cremoris HP. Can. J. Microbiol. 24 (1978) 372–380

    Google Scholar 

  35. Andrews, J. F.; Graef, S. P.:Dynamic modelling and simulation of the anaerobic process. Adv. Chem. Ser. 105 (1971) 126–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, M.A.M., Lemos, P.C., Martins, M.J. et al. Influence of sulfates and operational parameters on volatile fatty acids concentration profile in acidogenic phase. Bioprocess Eng. 6, 145–151 (1991). https://doi.org/10.1007/BF00369251

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369251

Keywords

Navigation