Skip to main content
Log in

Bond orbital approach for optical rotatory strength calculations

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Directly determined localized approximate molecular Orbitals are used in excitation energy and optical rotatory strength calculations within the CNDO/2 scheme. Using strictly localized bond orbitals one obtains qualitatively good excitation energies, but quantitative agreement can be found only by considering delocalization effects, which have been proved to be crucial in determining the optical rotatory strength. The delocalization interactions are classified as through space and through bond ones and even the latter is found to have significant contributions. The chiroptical properties of the lowest lying transitions in the twisted glyoxal molecule are analysed in terms of localized molecular orbital contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chalvet, O., Daudel, R., Diner, S., Malrieu, J. -P. eds.: Localization and delocalization in quantum chemistry, Vol. 1. Dordrecht-Boston: Reidel, 1975

    Google Scholar 

  2. Chalvet, O., Daudel, R., Diner, S., Malrieu, J. -P. eds.: Localization and delocalization in quantum chemistry, Vol. 2. Dordrecht-Boston: Reidel, 1976

    Google Scholar 

  3. Langlet, J.: Theoret. Chim. Acta (Berl.) 27, 223 (1972).

    Google Scholar 

  4. Denis, A., Langlet, J., Malrieu, J.-P.: Theoret. Chim. Acta (Berl.) 29, 117 (1973)

    Google Scholar 

  5. Langlet, J., Malrieu, J. -P.: Theoret. Chim. Acta (Berl.) 30, 59 (1973)

    Google Scholar 

  6. Tinoco, I., Jr.: Adv. Chem. Phys. 4, 113 (1962)

    Google Scholar 

  7. Schellman, J. A.: Chem. Rev. 75, 323 (1975)

    Google Scholar 

  8. Caldwell, D. J., Eyring, H.: in Theoretical chemistry, vol. 2 (eds. Eyring, H., Henderson, D.). New York: Academic, 1976

    Google Scholar 

  9. Snatzke, G.: Angew. Chem. Int. Ed. Engl. 18, 363 (1979)

    Google Scholar 

  10. Moscowitz, A.: Tetrahedron 13, 48 (1961)

    Google Scholar 

  11. Rauk, A., Barriel, J. M., Ziegler, T.: in Progress in theoretical chemistry, vol. 2 (ed. Csizmadia, I. G.) pp. 467. Amsterdam-Oxford-New York: Elsevier, 1977

    Google Scholar 

  12. Boys, S. F., Foster, J.: Rev Mod. Phys. 32, 300 (1960)

    Google Scholar 

  13. Edmiston, C., Ruedenberg, K.: Rev. Mod. Phys. 35, 457 (1963)

    Google Scholar 

  14. Magnasco, V., Perico, A.: J. Chem. Phys. 47, 971 (1967)

    Google Scholar 

  15. Bouman, T. D., Voigt, D., Hansen, A. E.: J. Am. Chem. Soc. 101, 550 (1979).

    Google Scholar 

  16. Bendazzoli, G., Biscarini, P., Palmieri, P., Gottarelli, G.: J. Chem. Soc. Faraday Trans. II. 77, 503 (1981)

    Google Scholar 

  17. Imamura, A., Hirao, K.: Tetrahedron 35, 2243 (1979)

    Google Scholar 

  18. Akagi, K., Yamabe, T., Kato, H., Imamura, A., Fukui, K.: J. Am. Chem. Soc. 102, 5157 (1980)

    Google Scholar 

  19. Surján, P. R., Mayer, I.: Theoret. Chim. Acta (Berl.) 59, 603 (1981)

    Google Scholar 

  20. Surján, P. R., Náray-Szabó, G., Mayer, I.: Intern. J. Quantum Chem. 22, 929 (1982)

    Google Scholar 

  21. Surján, P. R., Révész, M., Mayer, I.: J. Chem. Soc. Faraday Trans. II. 77, 1129 (1981)

    Google Scholar 

  22. Mayer, I.: Chem. Phys. Letters 89, 390 (1982)

    Google Scholar 

  23. Surján, P. R., Mayer, I., Kertész, M.: J. Chem. Phys. 77, 2454 (1982)

    Google Scholar 

  24. Malrieu, J. -P.: in Modern theoretical chemistry, Vol. 7 (ed. Segal, J. A.) pp. 69. New York: Plenum, 1977

    Google Scholar 

  25. Lefèbre, R.: Cah. Phys. 13, 369 (1959)

    Google Scholar 

  26. Zahradnik, R., Polák, R.: Elements of quantum chemistry. New York: Plenum, 1981

    Google Scholar 

  27. Mayer, I.: Adv. Quantum Chem. 12, 189 (1980)

    Google Scholar 

  28. Hug, W., Wagniére, G.: Theoret. Chim. Acta (Berl.) 18, 57 (1970)

    Google Scholar 

  29. Hug, W., Wagnière, G.: Helv. Chim. Acta 54, 633 (1971)

    Google Scholar 

  30. Hug, W., Wagnière, G.: Tetrahedron 28, 1241 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ángyán, J., Surján, P.R. Bond orbital approach for optical rotatory strength calculations. Theoret. Chim. Acta 63, 43–54 (1983). https://doi.org/10.1007/BF00549154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549154

Key words

Navigation