Skip to main content
Log in

Ab initio study of the HCO 3 /H2O exchange in the (NH3)3 ZnII(HCO 3 ) complex

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The displacement of bicarbonate anion in the (NH3)3ZnII(HCO 3 ) complex with water has been studied throughab initio calculations. It has been found that H2O binds to the (NH3)3ZnII(HCO 3 ) species yielding a stable pentacoordinate (NH3)3ZnII(HCO 3 )(H2O) complex. The results also indicate that deprotonation of water in the pentacoordinate species facilitates the release of HCO 3 , although, the presence of HCO 3 in the coordination sphere of ZnII makes such deprotonation more difficult. Environmental effects have been considered in the study of HCO 3 /H2O exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prince RH, Woolley PR (1972) J Chem Soc Dalton Trans 1548

  2. Williams TJ, Henkens RW (1985) Biochemistry 24:2459

    PubMed  Google Scholar 

  3. Sen AC, Tu CK Thomas H, Wvnns GC, Silverman DN (1986) In: Bertini I, Luchinat C, Maret W, Zeppezauer M. (eds) Zinc enzymes, Vol I. Birkhäuser, Boston, p. 329

    Google Scholar 

  4. Silverman DN, Lindskog S (1988) Acc Chem Res 21:30

    Google Scholar 

  5. Woolley P (1975) Nature 258:677

    PubMed  Google Scholar 

  6. Bertini I, Luchinat C (1983) Acc Chem Res 16:272

    Google Scholar 

  7. Pocker Y, Deits TL (1982) J Am Chem Soc 104:2424

    Google Scholar 

  8. Kannan KK, Petef M, Fridborg K, Lövgren S, Ohlsson A, Petef M (1975) Proc Natl Acad Sci USA 72:51

    PubMed  Google Scholar 

  9. Kannan KK, Petef M, Fridborg K, Cid-Dresdner H, Lövgren S (1977) FEBS Lett 73:115

    PubMed  Google Scholar 

  10. Liljas A, Kannan KK, Bergsten P-C, Waara I, Fridborg K, Strandberg B, Carlbom U, Järup L, Lövgren S, Petef M (1972) Nature New Biol 235:131

    PubMed  Google Scholar 

  11. Eriksson EA, Jones TA, Liljas A (1986) In: Bertini I, Luchinat C, Maret W, Zeppezauer M (eds) Zinc enzymes Vol I. Birkhäuser, Boston, p. 317

    Google Scholar 

  12. Davis RP (1959) J Am Chem Soc 81:5674

    Google Scholar 

  13. Pocker Y, Janjić N (1989) J Am Chem Soc 111:731

    Google Scholar 

  14. Silverman DN, Tu CK (1975) J Am Chem Soc 97:2263

    Google Scholar 

  15. Coates JH, Gentle GJ, Lincoln SF (1974) Nature 249:773

    PubMed  Google Scholar 

  16. Pocker Y, Miao CH (1987) Biochemistry 26:8481

    PubMed  Google Scholar 

  17. Steiner H, Jonsson B-H, Lindskog S (1975) Eur J Biochem 59:253

    PubMed  Google Scholar 

  18. Merz Jr, KM, Hoffmann R, Dewar MJS (1989) J Am Chem Soc 111:5636

    Google Scholar 

  19. Bertini I, Canti G, Luchinat C, Mani F (1981) J Am Chem Soc 103:7784;

    Google Scholar 

  20. Led JJ, Neesgaard E (1987) Biochemistry 26:183;

    PubMed  Google Scholar 

  21. Haffner PH, Coleman JE (1975) J Biol Chem 250:996

    PubMed  Google Scholar 

  22. Looney A, Han R, McNeil K, Parkin G (1993) J. Am Chem Soc 115:4690;

    Google Scholar 

  23. Williams TJ, Henkens RW (1985) Biochemistry 24:2459;

    PubMed  Google Scholar 

  24. Darensbourg DJ, Meckfessel Jones ML, Reibenspies JH (1993) Inorg Chem 32:4675

    Google Scholar 

  25. Xue Y, Vidgren J, Svensson LA, Liljas A, Jonsson B-H, Lind-skog S (1993) Proteins 15:80

    PubMed  Google Scholar 

  26. Haffner PH, Coleman JE (1975) J Biol Chem 250:996

    PubMed  Google Scholar 

  27. Moratal JM, Martínez-Ferrer M-J, Donaire A, Castells J, Salgado J, Jiménez HR (1991) J Chem Soc Dalton Trans 3393

  28. Nakacho Y, Misawa T, Fujiwara T, Wakawars A, Tomita K (1976) Bull Chem Soc Jpn 49:595

    Google Scholar 

  29. Grewe H, Udupa MR, Krebs B (1982) Inorg Chim Acta 63:119;

    Google Scholar 

  30. Kai Y, Morita M, Yasuoka N, Kasai N (1985) Bull Chem Soc Jpn 58:1631;

    Google Scholar 

  31. Takahashi K, Nishida Y, Kida S (1984) Bull Chem Soc Jpn 57:2628;

    Google Scholar 

  32. Bencini A, Bianchi A, Garcia-Espana E, Mangani S, Micheloni M, Orioli P, Paoletti P (1988) Inorg Chem 27:1104

    Google Scholar 

  33. Monzingo AF, Matthews BW (1984) Biochemistry 23:5724

    PubMed  Google Scholar 

  34. Kato M, Ito T (1985) Inorg Chem 24:509

    Google Scholar 

  35. Harrison PG, Begley MJ, Kikabhai T, Killer F (1986) J Chem Soc Dalton Trans 929

  36. Lebioda L, Stec B (1989) J Am Chem Soc 111:8511

    Google Scholar 

  37. Holmes MA, Matthews BW (1981) Biochemistry 20:6912

    PubMed  Google Scholar 

  38. Kuo LC, Makinen MW (1982) J Biol Chem 257:24

    PubMed  Google Scholar 

  39. Kimura E, Koike T, Toriumi K (1988) Inorg Chem 27:3687

    Google Scholar 

  40. Kimura E, Shiota T, Koike T, Shiro M, Kodama M (1990) J Am Chem Soc 112:5805

    Google Scholar 

  41. Kimura E, Koike T (1991) Comments Inorg Chem 11:285

    Google Scholar 

  42. Auf der Heyde TPE, Nassimbeni LR (1984) Acta Crystallographica B40:582

    Google Scholar 

  43. Zhang C, Chadha R, Reddy HK, Schrauzer GN (1991) Inorg Chem 30:3865

    Google Scholar 

  44. Kirchner C, Krebs B (1987) Inorg Chem 26:3569

    Google Scholar 

  45. Hakansson K, Wehnert A (1992) J Mol Biol 228:1212

    PubMed  Google Scholar 

  46. Hakansson K, Carlsson M, Svensson LA, Liljas A (1992) J Mol Biol 227: 1192;

    PubMed  Google Scholar 

  47. Kumar V, Kannan KK (1984) J. Mol. Biol. 241:226

    Google Scholar 

  48. Liang J-Y, Lipscomb WN (1989) Int J Quantum Chem 36:299;

    Google Scholar 

  49. Liang J-Y, Lipscomb WN (1989) Int J Quantum Chem 36:299

    Google Scholar 

  50. Khalifah RG (1980) In: Bayer C, Gros G, Bartels H (eds) Biophysics and physiology of carbon dioxide. Springer, New York, p 206

    Google Scholar 

  51. Kraus M, Garner DR (1991) J Am Chem Soc 113:6426

    Google Scholar 

  52. Garmer DR, Kraus M (1992) J Am Chem Soc 114:6487;

    Google Scholar 

  53. Garmer DR, Kraus M (1992) Int J Quantum Chem 42:1469

    Google Scholar 

  54. Roothaan CCJ (1951) Rev Mod Phys 23:69

    Google Scholar 

  55. Demoulin D, Pullman A (1978) Theoret Chim Acta 49:161;

    Google Scholar 

  56. Pullman A (1981) Ann N Y Acad Sci 367:340

    PubMed  Google Scholar 

  57. Schlegel HB (1982) J Comp Chem 3:214

    Google Scholar 

  58. Broyden CG (1970) Math Comp 24:365

    Google Scholar 

  59. Fletcher R (1970) Comput J 13:317

    Google Scholar 

  60. Goldfarb D (1970) Math Comp 24:23

    Google Scholar 

  61. Shanno DF (1970) Math Comp 24:647

    Google Scholar 

  62. Kitchen DB, Allen LC (1989) J Phys Chem 93:7265

    Google Scholar 

  63. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939

    Google Scholar 

  64. Dobbs KD, Hehre WJ (1987) J Comp Chem 8:861

    Google Scholar 

  65. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657

    Google Scholar 

  66. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer P von R (1983) J Comp Chem 4:294

    Google Scholar 

  67. Wachters AJH (1970) J Chem Phys 52:1033

    Google Scholar 

  68. Hay PJ (1977) J Chem Phys 66:4377

    Google Scholar 

  69. Stewart RF (1970) J Chem Phys 52:431

    Google Scholar 

  70. Rosi M, Baushchlicher CW (1989) J Chem Phys 90:7264

    Google Scholar 

  71. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Google Scholar 

  72. Hariharan PC, Pople JA (1973) Theoret Chim Acta 28:213

    Google Scholar 

  73. Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Google Scholar 

  74. Pascual-Ahuir JL, Silla E, Tomasi J, Bonaccorsi R (1987) J Comp Chem 8:778

    Google Scholar 

  75. Floris F, Tomasi J (1989) J Comp Chem 10:616;

    Google Scholar 

  76. Cammi R, Tomasi J (1994) J Chem Phys 100:7495

    Google Scholar 

  77. The sphere radii used for atoms were 20% larger than the van der Waals (or ionic) radii, (hydrogen, 1.44 Å; Å; carbon, 1.94 Å; nitrogen, 1.80 Å; oxygen, 1.68 Å; zinc, 0.84 Å). The surrounding medium effect calculations were carried out at 298.15 K

  78. Pierotti RA (1976) Chem Rev 76:717

    Google Scholar 

  79. Karelson MM, Katritzky AR, Szafran M, Zerner MC (1989) J Org Chem 54:6030

    Google Scholar 

  80. Karelson MM, Katritzky AR, Szafran M, Zerner MC (1990) J Chem Soc Perkin Trans. 2:195

    Google Scholar 

  81. Frisch MJ, Binkley JS, Schlegel HB, Raghavachari K, Melius, CF, Martin RL, Stewart JJP, Bobrowicz FW, Rohlfing CM, Kahn LR, Defrees DF, Seeger R, Whiteside RA, Fox DJ, Fleider EM, Pople JA (1984) Program GAUSSIAN86, Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh PA

    Google Scholar 

  82. Peterson MR, Poirier RA (1981) Program MONSTERGAUSS, Department of Chemistry, University of Toronto, Ontario, Canada

    Google Scholar 

  83. Jacob O, Cardenas R, Tapia O (1990) J Am Chem Soc 112:8692

    Google Scholar 

  84. Møller C, Plesset MS (1934) Phys Rev 46:618

    Google Scholar 

  85. Rossi AR, Hoffmann R (1975) Inorg Chem 14:365

    Google Scholar 

  86. Mayer I (1986) Int J Quantum Chem 29:477

    Google Scholar 

  87. Solà M, Lledós A, Duran M, Bertrán J (1991) Inorg Chem 30:2523;

    Google Scholar 

  88. Solà M, Lledós A, Duran M, Bertrán J (1992) J Am Chem Soc 114:869;

    Google Scholar 

  89. Solà M, Lledós A, Duran M, Bertrán J (1992) In: Bertrán J (ed) Molecular aspects of biotechnology: computational models and theories, Kluwer Academic Press, The Netherlands, p 263

    Google Scholar 

  90. Giessner-Prettre C, Jacob O (1989) J Comput-Aided Mol Design 3:23

    Google Scholar 

  91. Bader RWF (1985) Acc Chem Res 18:9

    Google Scholar 

  92. Pocker Y, Deits TL (1981) J Am Chem Soc 103:3949

    Google Scholar 

  93. Bertini I, Luchinat C, Rosi M, Sgamellotti A, Tarantelli F (1990) Inorg Chem 29:1460

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A contribution from the “Grup de Química Quàntica de l'Institut d'Estudis Catalans”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solà, M., Andrés, J.L., Duran, M. et al. Ab initio study of the HCO 3 /H2O exchange in the (NH3)3 ZnII(HCO 3 ) complex. Theoret. Chim. Acta 91, 333–351 (1995). https://doi.org/10.1007/BF01133079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01133079

Key words

Navigation