Skip to main content
Log in

Origin of P16 median nerve SEP component identified by dipole source analysis — subthalamic or within the thalamo-cortical radiation?

  • Original Paper
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Following median nerve stimulation, several monophasic peaks were recorded at the scalp in the 15–18 ms time range. Source analysis, using three different methods, modelled a source near the centre of the head with an orientation towards the activated hemisphere and a peak activity at 16 ms post stimulus. Magnetic recordings detected no signal in this time range, which confirmed a subcortical location of the source. From dipole localization it was not possible to assign the exact origin of the P16 source to either the subthalamic level or the thalamo-cortical radiation, because of the limited spatial resolution at the centre of the spherical head model. An estimate of the conduction velocity of the medial lemniscus pointed towards a subthalamic origin. The P16 source was preserved in two patients with a lesion of the thalamo-cortical radiation and the ventral thalamus. Further evidence for a subthalamic location of P16 was derived from the physical mechanisms generating far-field potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbruzzese M, Favale E, Leandri M, Ratto S (1978) New subcortical components of the cerebral somatosensory evoked potential in man. Acta Neurol Scand 58: 325–332

    Google Scholar 

  • Adams L, Krybus W, Meyer-Ebrecht D, Rüger R, Gilsbach JM, Mösges R, Schlöndorff G (1990) Computer-assisted surgery. IEEE Comput Graphics Applications 10: 43–51

    Google Scholar 

  • Albe-Fessard D, Tasker R, Yamashiro K, Chodakiewitz J, Dostrovsky J (1986) Comparison in man of short latency averaged evoked potentials recorded in thalamic and scalp hand zones of representation. Electroencephalogr Clin Neurophysiol 65: 405–415

    Google Scholar 

  • Arezzo J, Legatt AD, Vaughan HG (1979) Topography and intracranial sources of somatosensory evoked potentials in the monkey. I. Early components. Electroencephalogr Clin Neurophysiol 46: 155–172

    Google Scholar 

  • Benamou M, Métral S, Hort-Legrand C, Belec L, Lestrade R (1990) In vitro model of far-field stationary potentials: boundary effects on propagated potentials. Electroencephalogr Clin Neurophysiol 76: 187–192

    Google Scholar 

  • Blinkov SM, Glezer II (1968) The central nervous system in numbers and tables. VEB Gustav Fischer, Jena

    Google Scholar 

  • Buchner H, Scherg M (1991) Analyse der Generatoren früher kortikaler somatosensibel evozierter Potentiale (N. Medianus) mit der Brain Electric Source Analysis. Z EEG EMG 21: 95

    Google Scholar 

  • Buchner H, Adams L, Knepper A, Rüger R, Laborde G, Gilsbach J-M, Ludwig I, Reul J, Scherg M (1994a) Preoperative localization of the central sulcus by dipole source analysis of early somatosenory evoked potentials and three dimensional magnetic resonance imaging. J Neurochir 80: 849–856

    Google Scholar 

  • Buchner H, Adams L, Müller A, Ludwig I, Knepper A, Thron A, Niemann K, Scherg M (1995) Somatotopy of human hand somatosensory cortex revealed by dipole source analysis of early somatosensory evoked potentials and 3D-NMR-tomography. Electroencephalogr Clin Neurophysiol 96: 121–134

    Google Scholar 

  • Buchner H, Fuchs M, Wischmann HA, Dössel O, Ludwig I, Knepper A, Berg P (1994b) Source analysis of median nerve and finger stimulated somatosensory evoked potentials: multichannel simultaneous recording with 3D-MR tomography. Brain Topogr 6: 299–310

    Google Scholar 

  • Celesia GG (1979) Somatosensory evoked potentials recorded directly from human thalamus and Sm I cortical area. Arch Neurol 36: 399–405

    Google Scholar 

  • Cunningham K, Halliday AM, Jones SJ (1986) Simulation of “stationary” SAP and SEP phenomena by 2-dimensional potential field modelling. Electroencephalogr Clin Neurophysiol 65: 416–428

    Google Scholar 

  • Desmedt JE (1988) Somatosensory evoked potential. In: Picton TW (ed) EEG-handbook, vol 3, Human event-related potentials. Elsevier, Amsterdam, pp 245–360

    Google Scholar 

  • Deupree DL, Jewett DL (1988) Far-field potentials due to action potentials travelling curved nerves, reaching cut nerve ends, and crossing boundaries between cylindrical volumes. Electroencephalogr Clin Neurophysiol 70: 355–362

    Google Scholar 

  • Dössel O, David B, Fuchs M, Krüger H, Wischmann H-A (1993) A 31-channel SQUID system for biomagnetic imaging. Appl Superconductivity 1: 1813–1825

    Google Scholar 

  • Dumitru D, King J (1993) Far-field potential production by quadrupole generators in cylindrical volume conductors. Electroencephalogr Clin Neurophysiol 88: 421–431

    Google Scholar 

  • Eisen A (1982) The somatosensory evoked potential. J Can Sci Neurol 9: 65–77

    Google Scholar 

  • Eisen A, Roberts K, Low M, Hoirch M, Lawrence P (1984) Questions regarding the sequential neural generator theory of the somatosensory evoked potential raised by digital filtering. Electroencephalogr Clin Neurophysiol 59: 388–395

    Google Scholar 

  • Eisen A, Odusote K, Bozek C, Hoirch M (1986) Farfield potentials from peripheral nerve generated at sites of muscle mass change. Neurology 36: 815–818

    Google Scholar 

  • Emori T, Yamada T, Seki Y, Yasuhara A, Ando K, Honda Y, Leis AA, Vachatimanont P (1991) Recovery functions of fast frequency potentials in the initial negative wave of median SEP. Electroencephalogr Clin Neurophysiol 78: 116–123

    Google Scholar 

  • Franssen H, Stegeman DF, Moleman J, Schoobaar RP (1992) Dipole modelling of median nerve SEPs in normal subjects and patients with small subcortical infarcts. Electroencephalogr Clin Neurophysiol 84: 401–417

    Google Scholar 

  • Fukushima T, Mayanagi Y, Bouchard G (1976) Thalamic evoked potentials to somatosensory stimulation in man. Electroencephalogr Clin Neurophysiol 40: 481–490

    Google Scholar 

  • Haines DE (1983) Neuroanatomy — an atlas of structures, sections and systems. Urban and Schwarzenberg, Baltimore

    Google Scholar 

  • Jewett DL, Deupree DL (1989) Far-field potentials recorded from action potentials and from tripole in a hemicylindrical volume. Electroencephalogr Clin Neurophysiol 72: 439–449

    Google Scholar 

  • Jewett DL, Deupree DL, Bommannan D (1990) Far-field potentials generated by action potentials of isolated frog sciatic nerves in a spherical volume. Electroencephalogr Clin Neurophysiol 75: 105–117

    Google Scholar 

  • Katayama Y, Tsubokawa T (1987) Somatosensory evoked potentials from the thalamic sensory relay nucleus (VPL) in humans: correlations with short latency somatosensory evoked potentials recorded at the scalp. Electroencephalogr Clin Neurophysiol 68: 187–201

    Google Scholar 

  • Lopes da Silva FH, Wieringa HJ, Peters MJ (1991) Source localization of EEG versus MEG: empirical comparison using visually evoked responses and theoretical considerations. Brain Topogr 4: 133–142

    Google Scholar 

  • Lorente de No R (1947) A study of nerve physiology. Studies from the Rockefeller Institute, New York, vol 132

  • Lüders H, Lesser RP, Hahn J, Dinner DS, Klem G (1983) Cortical somatosensory evoked potentials in response to hand stimulation. J Neurosurg 58: 885–894

    Google Scholar 

  • Lüders H, Dinner DS, Lesser RP, Morris HH (1986) Evoked potentials in cortical localization. J Clin Neurophysiol 3: 75–84

    Google Scholar 

  • Maccabee PJ, Hassan NF, Cracco RQ, Schiff JA (1986) Short latency somatosensory and spinal evoked potentials: power spectra and comparison between high pass analog and digital filter. Electroencephalogr Clin Neurophysiol 65: 177–187

    Google Scholar 

  • Mosher JC, Spencer ME, Leahy RM, Lewis PS (1993) Error bounds of EEG and MEG dipole source localization. Electroencephalogr Clin Neurophysiol 86: 303–321

    Google Scholar 

  • Nakanishi T (1982) Action potentials recorded by fluid electrodes. Electroencephalogr Clin Neurophysiol 53: 343–345

    Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1981) The human central nervous system. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nunez PL (1981) Electric fields of the brain. Oxford University Press, New York

    Google Scholar 

  • Scherg M (1990) Fundamentals of dipole source potential analysis. In: Hoke F, Romani M (eds) Auditory evoked magnetic fields and electric potentials. Karger, Basel, pp 40–69

    Google Scholar 

  • Scherg M, von Cramon D (1985) Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol 62: 32–44

    Google Scholar 

  • Scherg M, Vajsar J, Picton TW (1990) A source analysis of the human auditory evoked potentials. J Cogn Neurosci 1: 336–55

    Google Scholar 

  • Stegeman DF, Van Oosterom A, Colon EJ (1987) Far-field evoked potential components induced by a propagating generator: computational evidence. Electroencephalogr Clin Neurophysiol 67: 176–187

    Google Scholar 

  • Stöhr M, Riffel B (1982) Short-latency somatosensory evoked potentials to median nerve stimulation: components N13-P13, N14-P14, P15, P16 and P18 with different recording methods. J Neurol 228: 39–47

    Google Scholar 

  • Tsuji S, Shibasaki H, Kato M, Kuroiwa Y, Shima F (1984) Subcortical, thalamic and cortical somatosensory evoked potentials to median nerve stimulation. Electroencephalogr Clin Neurophysiol 59: 465–476

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchner, H., Waberski, T.D., Fuchs, M. et al. Origin of P16 median nerve SEP component identified by dipole source analysis — subthalamic or within the thalamo-cortical radiation?. Exp Brain Res 104, 511–518 (1995). https://doi.org/10.1007/BF00231985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231985

Key words

Navigation