Skip to main content
Log in

Repetitive impulses generated in fast and slow pyramidal tract cells by intracellularly applied current steps

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Responses to current steps were recorded from pyramidal tract (PT) cells of the cat by means of intracellular microelectrodes. PT cells with resting potentials from -60 to -80 mV set up a well sustained repetitive discharge during stimulation. When comparing fast and slow PT cells, quantitative differences were found between them in the pattern of repetitive firing. Thus, (1) the rheobase is lower in slow PT cells (mean and S.D.; 0.53±0.63 nA) than in fast cells (1.57±1.11 nA). (2) Following stimulation with a current step twice rheobase the latency and the successive interspike intervals are shorter in fast PT cells than in slow cells. (3) The interspike interval distribution shows a greater irregularity in fast PT cells than in slow cells. At firing rates around 30 impulses/sec the coefficient of variation has a mean value of 0.243 for fast PT cells and 0.085 for slow cells. (4) Fast PT cells show a greater decrease of firing rate during the initial 300 msec of current stimulation (adaptation) than do slow cells. The mean value of this initial decrease is 1.85 times the later steady firing rate in fast PT cells and 0.56 times in slow cells. (5) The slope constant of the firing rate-current relationship is larger in fast PT cells, being five times or more than in slow cells. These characteristics of firing pattern are termed “kinetic” and “tonic” for fast and slow PT cells respectively, and their functional meanings are discussed in comparison with other neural organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradley, K., Somjen, G.G.: Accommodation of motoneurones of the rat and the cat. J. Physiol. (Lond.)156, 75–92 (1961).

    Google Scholar 

  • Buller, A.J., Nicholls, J.G., Ström, G.: Spontaneous fluctuations of excitability in the muscle spindle of the frog. J. Physiol. (Lond.)122, 409–418 (1953).

    Google Scholar 

  • Creutzfeldt, O.D., Lux, H.D., Nacimiento, A.C.: Intracelluläre Reizung corticaler Nervenzellen. Pflügers Arch. ges. Physiol.281, 129–151 (1964).

    Google Scholar 

  • Eccles, J.C., Eccles, R.M., Iggo, A., Ito, M.: Distribution of recurrent inhibition among motoneurones. J. Physiol. (Lond.)159, 479–499 (1961).

    Google Scholar 

  • — —, Lundberg, A.: The action potentials of the alpha motoneurones supplying fast and slow muscles. J. Physiol. (Lond.)142, 275–291 (1958).

    Google Scholar 

  • Eldred, P., Tokizane, T.: Two patterns of afferent discharge from muscle spindles. Amer. J. Physiol.183, 612 (1955).

    Google Scholar 

  • Evarts, E.V.: Relation of discharge frequency to conduction velocity in pyramidal tract neurons. J. Neurophysiol.28, 216–228 (1965).

    PubMed  Google Scholar 

  • Eyzaguirre, C., Kuffler, S.W.: Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J. gen. Physiol.39, 87–119 (1955).

    PubMed  Google Scholar 

  • Frank, K., Fuortes, M.G. E.: Stimulation of spinal motoneurones with intracellular electrodes. J. Physiol. (Lond.)134, 451–470 (1956).

    Google Scholar 

  • Fuortes, M.G.F.: Electric activity of cells in the eye of Limulus. Amer. J. Ophthal.46, 210–223 (1958).

    Google Scholar 

  • —, Mantegazzini, F.: Interpretation of the repetitive firing of nerve cells. J. gen. Physiol.45, 1163–1179 (1962).

    PubMed  Google Scholar 

  • Granit, R., Henatsch, H.D., Steg, G.: Tonic and phasic ventral horn cells differentiated by post-tetanic potentiation in cat extensors. Acta physiol. scand.37, 114–126 (1956).

    PubMed  Google Scholar 

  • —, Kernell, D., Shortess, G.K.: Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents. J. Physiol. (Lond.)168, 911–931 (1963).

    Google Scholar 

  • Granit, R., Pascoe, J.E., Steg, G.: The behaviour of tonic α and γ motoneurones during stimulation of recurrent collaterals. J. Physiol. (Lond.)138, 381–400 (1957).

    Google Scholar 

  • —, Phillips, C.G., Skoglund, S., Steg, G.: Differentiation of tonic from phasic alpha ventral horn cells by stretch, pinna and crossed extensor reflexes. J. Neurophysiol.20, 470–481 (1957).

    PubMed  Google Scholar 

  • —, Rutledge, L.T.: Surplus excitation in reflex action of motoneurones as measured by recurrent inhibition. J. Physiol. (Lond.)154, 288–307 (1960).

    Google Scholar 

  • Hagiwara, S.: Analysis of interval fluctuation of the sensory nerve impulse. Jap. J. Physiol.4, 234–240 (1954).

    PubMed  Google Scholar 

  • Henatsch, H.D., Schulte, F.J.: Reflexerregung und Eigenhemmung tonischer und phasischer Alpha-Motoneurone während chemischer Dauererregung der Muskelspindeln. Pflügers Arch. ges. Physiol.268, 134–147 (1958).

    Google Scholar 

  • Henneman, E., Somjen, G., Carpenter, D.O.: Functional significance of cell size in spinal motoneurones. J. Neurophysiol.28, 560–580 (1965).

    PubMed  Google Scholar 

  • Hodgkin, A.L.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. (Lond.)107, 165–181 (1948).

    Google Scholar 

  • Katsuki, Y., Yoshino, S.: Response of the single lateral-line nerve fiber to the linearly rising current stimulating the endorgan. Jap. J. Physiol.2, 219–231 (1952).

    PubMed  Google Scholar 

  • — —, Cheu, J.: Action currents of the single lateral-line nerve fiber of fish. I. On the spontaneous discharge. Jap. J. Physiol.1, 87–99 (1950).

    Google Scholar 

  • — — —: Action current of the single lateral-line nerve fiber of fish. II. On the discharge due to stimulation. Jap. J. Physiol.1, 179–194 (1951).

    Google Scholar 

  • Kernell, D.: The adaptation and the relation between discharge frequency and current strength of cat lumbosacral motoneurones stimulated by long-lasting injected currents. Acta physiol. scand.65, 65–73 (1965a).

    Google Scholar 

  • —: High-frequency repetitive firing of cat lumbosacral motoneurones stimulated by long lasting injected currents. Acta physiol. scand.65, 74–86 (1965b).

    Google Scholar 

  • —: The limits of firing frequency in cat lumbosacral motoneurones possessing different time course of after-hyperpolarization. Acta physiol. scand.65, 87–100 (1965c).

    Google Scholar 

  • Koike, H., Okada, Y., Oshima, T.: Accommodative properties of fast and slow pyramidal tract cells and their modification by different levels of their membrane potentials. Exp. Brain Res.5, 189–201 (1968b).

    PubMed  Google Scholar 

  • — — —, Takahashi, K.: Accommodative behavior of cat pyramidal tract cells investigated with intracellular injection of currents. Exp. Brain Res.5, 173–188 (1968a).

    PubMed  Google Scholar 

  • Kuno, M.: Excitability following antidromic activation in spinal motoneurones supplying red muscles. J. Physiol. (Lond.)149, 374–393 (1959).

    Google Scholar 

  • Lloyd, D.P.C.: Functional properties of neurons. In: Fulton, J.F. (Ed.) Howell's Textbook of Physiology (15th ed.), pp. 96–120. Philadelphia: Saunders 1946.

    Google Scholar 

  • Matthews, P.B.C., Stein, R.B.: The regularity of primary and secondary muscle spindle afferent discharges. J. Physiol. (Lond.)202, 59–82 (1969).

    Google Scholar 

  • Nakajima, S.: Adaptation in stretch receptor neurons of crayfish. Science146, 1168–1170 (1964).

    PubMed  Google Scholar 

  • —, Onodera, K.: Membrane properties of the stretch receptor neurones of crayfish with particular reference to mechanisms of sensory adaptation. J. Physiol. (Lond.)200, 161–185 (1969).

    Google Scholar 

  • Nelson, P.G., Burke, R.E.: Motoneuron accommodation and motor unit twitch properties. Proc. Internat. Union Physiol. Sci.7, 316 (1968).

    Google Scholar 

  • Oshima, T.: Studies of pyramidal tract cells. In: “Basic Mechanisms of the Epilepsies”, pp. 253–261. Ed. by H.H. Jasper, A.A. Ward, Jr. and A. Pope. Little, Brown and Co. 1969.

  • Pascoe, J.E.: The effects of ethyl chloride on the muscle spindles of the triceps surae of the rabbit. J. Physiol. (Lond.)180, 673–683 (1965).

    Google Scholar 

  • Sasaki, K., Otani, T.: Accommodation in spinal motoneurons of the cat. Jap. J. Physiol.11, 443–456 (1961).

    PubMed  Google Scholar 

  • Shimazu, H., Precht, W.: Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J. Neurophysiol.28, 991–1013 (1965).

    PubMed  Google Scholar 

  • Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J.5, 173–194 (1965).

    Google Scholar 

  • Takahashi, K.: Slow and fast groups of pyramidal tract cells and their respective membrane properties. J. Neurophysiol.28, 908–924 (1965).

    PubMed  Google Scholar 

  • —, Kubota, K., Uno, M.: Recurrent facilitation in cat pyramidal tract cells. J. Neurophysiol.30, 22–34 (1967).

    Google Scholar 

  • Tokizane, T., Shimazu, H.: Functional differentiation of Human Skeletal Muscle. Tokyo: University of Tokyo Press 1964.

    Google Scholar 

  • Werner, W., Mountcastle, V.B.: The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events. J. Neurophysiol.26, 958–977 (1963).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koike, H., Mano, N., Okada, Y. et al. Repetitive impulses generated in fast and slow pyramidal tract cells by intracellularly applied current steps. Exp Brain Res 11, 263–281 (1970). https://doi.org/10.1007/BF01474386

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01474386

Key words

Navigation