Skip to main content
Log in

Visually induced gamma-band responses in human electroencephalographic activity — a link to animal studies

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Visual presentation of an object produces firing patterns in cell assemblies representing the features of the object. Based on theoretical considerations and animal experiments, it has been suggested that the binding of neuronal representations of the various features is achieved through synchronization of the oscillatory firing patterns. The present study demonstrates that stimulus-induced gamma-band responses can be recorded non-invasively from human subjects attending to a single moving bar. This finding indicates the synchronization of oscillatory activity in a large group of cortical neurons. Gamma-band responses were not as apparent in the presence of two independently moving stimuli, suggesting that the neuronal activity patterns of different objects are not synchronized. These results open a new paradigm for investigating the mechanisms of feature binding and association building in relation to subjective perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bair W, Koch C, Newsome W, Britten K (1994) Power spectrum analysis of bursting cells in area MT in the behaving monkey. J Neurosci 14:2870–2892

    Google Scholar 

  • Bauer R, Brosch M, Eckhorn R (1995) Different rules of spatial summation from beyond the receptive field for spike rates and oscillation amplitudes in cat visual cortex. Brain Res 669:291–297

    Google Scholar 

  • Cacioppo JT (1990) The skelemotor system. In: Cacioppo JT, Tassinary LG (eds) Principles of psychophysiology. Cambridge University Press, Cambridge, pp 325–384

    Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex. Biol Cybern 60:121–130

    Google Scholar 

  • Eckhorn R, Frien A, Bauer R, Woelbern T, Kehr H (1993) High frequency (60–90 Hz) oscillations in primary visual cortex of awake monkey. Neuroreport 4:243–246

    Google Scholar 

  • Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Computation 2:293–307

    Google Scholar 

  • Engel AK, König P, Kreiter AK, Gray CM, Singer W (1991a) Temporal coding by coherent oscillations as a potential solution to the binding problem: physiological evidence. In: Schuster HG (ed) Nonlinear dynamics and neuronal networks. VHC, Weinheim, pp 3–25

    Google Scholar 

  • Engel AK, König P, Kreiter AK, Singer W (1991b) Interhemispheric synchronization of oszillatory neuronal responses in cat visual cortex. Science 252:1177–1179

    Google Scholar 

  • Engel AK, Kreiter AK, König P, Singer W (1991c) Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. PNAS 88:9136–9140

    Google Scholar 

  • Engel AK, König P, Kreiter AK, Schillen TB, Singer W (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15:218–226

    Google Scholar 

  • Gabor D (1946) Theory of communications. Proc IEE 93:429–457

    Google Scholar 

  • Galambos R (1992) A comparison of certain gamma band (40-Hz) brain rhythms in cat and man. In: Basar E, Bullock TH (ed) Induced rhythms in the brain. Birkhäuser, Boston, pp 201–216

    Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Google Scholar 

  • Jokeit H, Makeig S (1994) Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects. PNAS 91:6339–6343

    Google Scholar 

  • Jürgens E, Rösler F, Henninghausen E, Heil M (1995) Stimulus-induced gamma oscillations: harmonics of alpha activity? Neuroreport 6:813–816

    Google Scholar 

  • König P, Engel AK, Singer W (1995) Relation between oscillatory activity and long-range synchronization in cat visual cortex. PNAS 92:290–294

    Google Scholar 

  • Kreiter AK (1992) Kodierung neuronaler Assemblies durch kohärente Aktivität: Korrelationsanalysen im Sehsystem von Säugetieren. Eberhard-Karls-Universität, Tübingen (PhD thesis)

    Google Scholar 

  • Kreiter AK, Singer W (1992) Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. Europ J Neurosci 4:369–375

    Google Scholar 

  • Kreiter AK, Singer W (1994) Global stimulus arrangement determines synchronization of neuronal activity in the awake macaca monkey. Eur J Neurosci [Suppl] 7:153

    Google Scholar 

  • Kristeva-Feige R, Feige B, Makeig S, Ross B, Elbert T (1993) Oscillatory brain activity during a motor task. Neuroreport 4:1291–1294

    Google Scholar 

  • Lutzenberger W, Pulvermüller F, Elbert T, Birbaumer N (1995) Visual stimulation alters local 40-Hz responses in humans: an EEG-study. Neurosci Lett 183:39–42

    Google Scholar 

  • Makeig S (1993) Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol 86:283–293

    Google Scholar 

  • Milner PM (1974) A model for visual shape recognition. Psychol Rev 81:521–535

    Google Scholar 

  • Neuenschwander S, Varela FJ (1993) Visually triggered neuronal oscillations in the pigeon: an autocorrelation study of tectal activity. Eur J Neurosci 5:870–881

    Google Scholar 

  • Pantev C, Elbert T, Makeig S, Hampson S, Eulitz C, Hoke M (1993) Relationship of transient and steady-state auditory evoked fields. Electroencephalogr Clin Neurophysiol 88:389–396

    Google Scholar 

  • Pantev C, Elbert T, Lütkenhöner B (eds) (1994) Oscillatory eventrelated brain dyamics. Plenum, New York

    Google Scholar 

  • Pulvermüller F, Preissl H, Eulitz C, Pantev C, Lutzenberger W, Elbert T, Birbaumer N (1994a) Brain rhythms, cell assemblies and cognition: evidence from the processing of words and pseudowords. Psycoloquy 5:48

    Google Scholar 

  • Pulvermüller F, Preissl H, Eulitz C, Pantev C, Lutzenberger W, Elbert T, Birbaumer N (1994b) Gamma-band responses reflect word/pseudoword processing. In: Pantev C, Elbert T, Lütkenhöner B (eds) Oscillatory event-related brain dymanics. Plenum, New York

    Google Scholar 

  • Prechtl JC (1994) Visual motion induces synchronous oscillations in turtle visual cortex. PNAS 91:12467–12471

    Google Scholar 

  • Priestley MB (1988) Non-linear and non-stationary time series analysis. Academic, London

    Google Scholar 

  • Qian S, Chen D (1993) Discrete Gabor transform. IEEE Trans Signal Proc 41:2429–2438

    Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Google Scholar 

  • Tallon C, Bertrand O, Bouchet P, Pernier J (1995) Gamma-range activity evoked by coherent visual stimuli in humans. Eur J Neursci 7:1285–1291

    Google Scholar 

  • Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Näätänen R (1993) Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364:59–60

    Google Scholar 

  • Tovee MJ, Rolls ET (1992) Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli. Neuroreport 3:369–372

    Google Scholar 

  • Malsburg C von der, Schneider W (1986) A neural cocktail-party processor. Biol Cybern 54:29–40

    Google Scholar 

  • Young MP, Tanaka K, Yamane S (1992) On oscillating neuronal responses in the visual cortex of the monkey. J Neurophysiol 67:1464–1474

    Google Scholar 

  • Zeki S (1993) A vision of the brain. Blackwell Scientific, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M.M., Bosch, J., Elbert, T. et al. Visually induced gamma-band responses in human electroencephalographic activity — a link to animal studies. Exp Brain Res 112, 96–102 (1996). https://doi.org/10.1007/BF00227182

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227182

Key words

Navigation