Skip to main content
Log in

Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system

2. Some evidence for the existence of a type of GABA-rich strio-nigral neurons

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Interference with the neuronal connection between the substantia nigra and striatum of rat by hemitransection at the subthalamic level or lesion of left side of striatum by a simple suction method was studied in relation to the concentration of γ-aminobutyric acid (GABA) in both regions. Time interval studies, at two, six, and twelve days after hemitransection, showed that the GABA concentration in substantia nigra had markedly decreased, whereas only a slight change was shown on the striatum of the operated side. Destruction of the striatum by suction caused a significant fall of the GABA content in the ipsilateral side of substantia nigra. However, destruction of the frontal cortex alone did not cause any marked change in the GABA content of the substantia nigra. In addition, electron microscopic studies disclosed that within the synaptic organization of the substantia nigra approximately 20 % of the boutons contained elongated synaptic vesicles, and that, following coagulation of the striatum, some large axosomatic terminals containing elongated synaptic vesicles also underwent degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, R.W., Brady, R.O.: The distribution of glutamate decarboxylase in the nervous system of the Rhesus monkey. J. biol. Chem. 234, 926–928 (1959).

    Google Scholar 

  • Bak, I.J.: Abst. Electron microscopy of synaptic organization in substantia nigra of rat. Substantia Nigra and Sensorimotor Activities, Symposium. The New Jersey College of Medicine and Dentistry, 1969.

  • —, Hassler, R., Parizek, J., Wagner, A.: Electron microscopy of synaptic organization in striatum and substantia nigra of rat. Proc. VII. Congrès International de Microscopie Électronique, Grenoble, 1970, vol. 3, pp. 697–698.

    Google Scholar 

  • Baxter, C.F., Roberts, E.: Elevation of γ-aminobutyric acid in rat brain with hydroxylamine. Proc. exp. Biol. (N.Y.) 101, 811–815 (1959).

    Google Scholar 

  • —: Demonstration of thiosemicarbazide-inducedconvulsions in rats with elevated brain levels of γ-aminobutyric acid (GABA) in brain of the Rhesus monkey. J. Neurochem. 15, 209–213 (1968).

    Google Scholar 

  • Bodian, D.: An electron microscopic characterization of classes of synaptic vesicles by means of controled aldehyde fixation. J. Cell Biol. 44, 115–124 (1970).

    Google Scholar 

  • Crawford, J.M., Curtis, D.R.: The excitation and depression of mammalian cortical neurons by amino acids. Brit. J. Pharmacol. 23, 313–329 (1964).

    Google Scholar 

  • Curtis, D.R.: Pharmacology and neurochemistry of mammalian central inhibitory processes. In: Structure and Function of Inhibitory Neuronal Mechanisms, pp. 429–456. Ed. by C. von Euler, S. Skoglund and U. Soederberg. Oxford: Pergamon 1968.

    Google Scholar 

  • Duggan, A.W., McLennan, H.: Bicuculline and inhibition in the thalamus. Brain Res. 25, 188–191 (1971).

    Google Scholar 

  • Edinger, L.: Vorlesungen über den Bau der Nervösen Zentralorgane, 8th ed., vol. I. pp. 398. Leipzig: Vogel 1911.

    Google Scholar 

  • Fahn, S., Côté, L.J.: Regional distribution of γ-aminobutyric acid (GABA) in brain of Rhesus monkey. J. Neurochem. 15, 209–213 (1968).

    Google Scholar 

  • Florey, E., McLennan, H.: Effects of an inhibitory factor (factor I) from brain on central synaptic transmission. J. Physiol. (Lond.) 130, 446–455 (1955).

    Google Scholar 

  • Grofová, I., Rinvik, R.: An experimental electron microscopic study on the strionigral projection in the cat. Exp. Brain Res. 11, 249–262 (1970).

    Google Scholar 

  • Hassler, R.: Über die afferente Leitung und Steuerung des striären Systems. Nervenarzt 20, 537–541 (1949).

    Google Scholar 

  • —, Bak, I.J.: Unbalanced ratios of striatal dopamine and serotonin after experimental interruption of strionigral connection in rat. 3rd Symposium on Parkinson's Disease, pp. 29–38. Ed. by F.J. Gillingham and I.M.L. Donaldson. Edinburgh and London: Livingstone Ltd. 1968.

    Google Scholar 

  • Karlsson, U., Sohultz, R.L.: Fixation of the central nervous system for electron microscopy by aldehyde perfusion. 1. Preservation with aldehyde perfusates versus direct perfusion with osmium tetroxide with special reference to membranes and the extracellular space. J. Ultrastruct. Res. 12, 160–186 (1965).

    Google Scholar 

  • Kravitz, E.A., Kuffler, S.W., Potter, D.P.: γ-aminobutyric acid and other blocking compounds in Crustacea. III. Their relative concentration in separated motor and inhibitory axons. J. Neurophysiol. 26, 739–751 (1963).

    Google Scholar 

  • Krnjević, K., Schwartz, S.: The action of γ-aminobutyric acid on cortical neurons. Exp. Brain Res. 3, 320–336 (1967).

    Google Scholar 

  • Kržalić, L., Mandic, V., Milhailović, L.: On the glutamine and γ-aminobutyric acid contents of various regions of the cat brain. Experientia (Basel) 18, 368 (1962).

    Google Scholar 

  • Lowe, I.P., Robins, E., Eyerman, G.S.: The fluorometric measurement of glutamine decarboxylase and its distribution in brain. J. Neurochem. 3, 8–18 (1958).

    Google Scholar 

  • Müller, P.B., Langemann, H.: Distribution of glutamic acid decarboxylase activity in human brain. J. Neurochem. 9, 399–401 (1962).

    Google Scholar 

  • Nauta, W.J.H., Mehler, W.R.: Projections of the lentiform nucleus in the monkey. Brain Res. 1, 3–42 (1966).

    Google Scholar 

  • Neal, M.J., Iversen, L.L.: Subcellular distribution of endogenous and [3H] γ-aminobutyric acid in rat cerebral cortex. J. Neurochem. 16, 1245–1252 (1969).

    Google Scholar 

  • Obata, K., Ito, M., Ochi, R., Sato, N.: Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ-aminobutyric acid on Deiters neurons. Exp, Brain Res. 4, 43–57 (1967).

    Google Scholar 

  • Okada, Y., Nitsch-Hassler, C., Kim, J.S., Bak, I.J., Hassler, R.: Role of γ-aminobutyric acid (GABA) in extrapyramidal motor system. 1. Regional distribution of GABA in rabbit, rat, guinea pig and baboon CNS. Exp. Brain Res. (1971), in press.

  • Otsuka, M., Iversen, L.L., Hall, Z.W., Kravitz, E.A.: Release of γ-aminobutyric acid from inhibitory nerves of lobster. Proc. nat. Acad. Sci. (Wash.) 56, 1110–1115 (1966).

    Google Scholar 

  • —, Kravitz, E.A., Potter, D.P.: Physiological and chemical architecture of a lobster ganglion with particular reference to γ-aminobutyric and glutamate. J. Neurophysiol. 30, 725–752 (1967).

    Google Scholar 

  • Precht, W., Yoshida, M.: Blockage of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin. Brain Res. 32, 229–233 (1971).

    Google Scholar 

  • Riese, W.: Zur vergleichenden Anatomie der striofugalen Faserung. Anat. Anz. 57, 487–494 (1924).

    Google Scholar 

  • Rinvik, E., Grofová, I.: Observations on the fine structure of the substantia nigra in the cat. Exp. Brain Res. 11, 229–248 (1970).

    Google Scholar 

  • Salvador, R.A., Albers, R.W.: The distribution of glutamic-γ-aminobutyric transaminase in the nervous system of the Rhesus monkey. J. biol. Chem. 234, 922–925 (1959).

    Google Scholar 

  • Scott, E.M., Jacoby, W.B.: Soluble γ-aminobutyric-glutamic transaminase from Pseudomonas fluorescens. J. biol. Chem. 234, 932–936 (1959).

    Google Scholar 

  • Singh, S.I., Malhotra, C.L.: Amino-acid content of monkey brain. I. General pattern and quantitative value of glutamic acid, glutamine, γ-aminobutyric acid and aspartic acid. J. Neurochem. 9, 37–42 (1962).

    Google Scholar 

  • Szabo, J.: Topical distribution of the striatal efferents in the monkey. Exp. Neurol. 5, 21–36 (1962).

    Google Scholar 

  • Vogt, C. and Vogt, O.: Sitz und Wesen der Krankheiten im Lichte der topistischen Hirnforschung und des Variierens der Tiere. I. J. Psychol. Neurol. (Lpz.) 47, 237–457 (1937).

    Google Scholar 

  • Voneida, T.: An experimental study of the course and destination of fibers arising in the head of the caudate nucleus in the cat and the monkey. J. comp. Neurol. 115, 75–87 (1960).

    Google Scholar 

  • Weinstein, H., Roberts, E., Kakefuda, T.: Studies of subcellular distribution of γ-aminobutyric acid and glutamic decarboxylase in mouse brain. Biochem. Pharmacol. 12, 503–509 (1963).

    Google Scholar 

  • Yoshida, M., Precht, W.: Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers. Brain Res. 32, 225–228 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Bak, I.J., Hassler, R. et al. Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system. Exp Brain Res 14, 95–104 (1971). https://doi.org/10.1007/BF00234913

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234913

Key words

Navigation