Skip to main content
Log in

Electrophysiological properties of lateral reticular nucleus cells: I. Antidromic activation

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Antidromically activated intracellular and field potentials in the lateral reticular nucleus (LRN) of cat were recorded with microelectrode following stimulation of the inferior cerebellar peduncle.

LRN antidromic field potentials were well synchronized and relatively short duration negative waves. These potentials were observed only when the recording electrode was within the nucleus. No reversal of the negative potentials was detected outside of the nucleus.

Intracellular analysis revealed that antidromic firing of the LRN neuron is composed of M-IS-SD spikes. The IS-SD spike duration was short and sometimes followed by an afterpotential sequence of depolarization and hyperpolarization. Effects of depolarizing and hyperpolarizing currents, injected through the recording electrode, on the antidromic spike, membrane resistance and firing pattern were studied. Findings demonstrated that LRN cells are capable of high frequency firing with little accomodation. The membrane also displayed rectification properties. These results imply that LRN neurons are highly sensitive to depolarization signals and possess characteristics for providing background depolarization and tonic activation of their target neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agree, S.T., Kitai, S.T.: Decending influence on single units of the cat lateral reticular nucleus. Anat. Rec. 157, 203–204 (1967)

    Google Scholar 

  • Azzena, G.B., Ohno, T.: Influence of spino-reticulo-cerebellar pathway on Purkynê cells of paramedian lobule. Exp. Brain Res. 17, 63–74 (1973)

    Google Scholar 

  • Baker, R., Precht, W.: Electrophysiological properties of trochlear motoneurons as revealed by IVth nerve stimulation. Exp. Brain Res. 14, 127–157 (1972)

    Google Scholar 

  • Brock, L.G., Coombs, J.S., Eccles, J.C.: The recording of potentials from motoneurons with an intracellular electrode. J. Physiol. (Lond.) 117, 431–460 (1952)

    Google Scholar 

  • Brock, L.G., Coombs, J.S., Eccles, J.C.: Intracellular recording from antidromically activated motoneurons. J. Physiol. (Lond.) 122, 429–461 (1953)

    Google Scholar 

  • Brodal, A.: The cerebellar connections of the LRN (nucleus funiculi lateralis) in rabbit and cat. Experimental investigations. Acta psychiat. (Kbh.) 18, 171–233 (1943)

    Google Scholar 

  • Brodal, A.: Spinal afferents to the lateral reticular nucleus of the medulla oblongata in the cat. An experimental study. J. comp. Neurol. 91, 259–295 (1949)

    Google Scholar 

  • Brodal, P., Marsala, J., Brodal, A.: The cerebral cortical projection to the lateral reticular nucleus in the cat, with special reference to the sensorimotor cortical areas. Brain Res. 6, 252–274 (1967)

    Google Scholar 

  • Bruckmoser, P., Hepp-Reymond, M.C., Wiesendanger, M.: Effects of peripheral, rubral, and fastigial stimulation on neurons of the lateral reticular nucleus of the cat. Exp. Neurol. 27, 288–298 (1970a)

    Google Scholar 

  • Bruckmoser, P., Hepp-Reymond, M.C., Wiesendanger, M.: Cortical influence on single neurons of the lateral reticular nucleus of the cat. Exp. Neurol. 26, 239–252 (1970b)

    Google Scholar 

  • Burke, R., Lundberg, A., Weight, F.: Spinal border cell origin of the ventral spinocerebellar tract. Exp. Brain Res. 12, 283–294 (1971)

    Google Scholar 

  • Burton, J.E., Bloedel, J.R., Gregory, R.S.: Electrophysiological evidence for an input to lateral reticular nucleus from collaterals of dorsal spinocerebellar and cuneocerebellar fibers. J. Neurophysiol. 34, 885–897 (1971)

    Google Scholar 

  • Busch, H.F.M.: An anatomical analysis of the white matter in the brain stem of the cat. Assen, N.V.: Van Gorcum and Co. 1961

    Google Scholar 

  • Coombs, J.S., Curtis, D.R., Eccles, J.C.: The interpretation of spike potentials of motoneurons. J. Physiol. (Lond.) 139, 198–231 (1957)

    Google Scholar 

  • Coombs, J.S., Curtis, D.R., Eccles, J.C.: The electrical constants of the motoneurone membrane. J. Physiol. (Lond.) 145, 505–528 (1959)

    Google Scholar 

  • Courville, J.: Rubrobulbar fibers to the facial nucleus and the lateral reticular nucleus (nucleus of the lateral funiculus). An experimental study in the cat with silver impregnation methods Brain Res. 1, 317–337 (1986)

    Google Scholar 

  • Crichlow, E.C., Kennedy, T.T.: Functional characteristics of neurons in the lateral reticular nucleus with reference to localized cerebellar potentials. Exp. Neurol. 18, 141–153 (1967)

    Google Scholar 

  • Crichlow, E.C.: Influence of sensorimotor cortices on lateral reticular nucleus cells. Exp. Neurol. 32, 184–194 (1971)

    Google Scholar 

  • Eccles, J.C., Hubbard, J.I., Oscarsson, O.: Intracellular recording from cells of the ventral spino-cerebellar tract. J. Physiol. (Lond.) 158, 486–516 (1961)

    Google Scholar 

  • Eccles, J.C., Sabah, N.H., Táboříková, H.: Responses evoked in neurones of fastigial nucleus by cutaneous mechanoreceptors. Brain Res. 35, 523–527 (1971)

    Google Scholar 

  • Eccles, J.C.: The cerebellum as a computer: Patterns in space and time. J. Physiol. (Lond.) 229, 1–32 (1973)

    Google Scholar 

  • Eide, E., Fedina, L., Jansen, J., Lundberg, A., Vyklický, L.: Properties of Clarke's Column neurones. Acta physiol. scand. 77, 125–144 (1969)

    Google Scholar 

  • Frank, K., Fuortes, M.G.F.: Stimulation of spinal motoneurones with intracellular electrodes. J. Physiol. (Lond.) 134, 451–470 (1958)

    Google Scholar 

  • Grant, G., Oscarsson, O., Rosén, I.: Functional organization of the spinoreticulo-cerebsllar path with identification of its spinal component. Exp. Brain Res. 1, 306–319 (1966)

    Google Scholar 

  • Ito, M., Hongo, T., Yoshida, M., Okada, Y., Obata K.: Antidromic and trans-synaptic activation of Deiter's neurones induced from the spinal cord. Jap. J. Physiol. 14, 638–858 (1964)

    Google Scholar 

  • Kernell, D.: The delayed depolarization in cat and rat motoneurons. In: Progr. Brain Res. 12, p. 42–55. Ed. by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier 1964

    Google Scholar 

  • Kernell, D.: High frequency repetitive firing of cat lumber sacral motoneurones stimulated by long-lasting injected currents. Acta physiol. scand. 65, 74–86 (1986)

    Google Scholar 

  • Kitai, S.T., Kennedy, D.T., Morin, F., Gardner, E.: The lateral reticular nucleus of the medulla oblongata of the cat. Exp. Neurol. 17, 65–73 (1967)

    Google Scholar 

  • Kitai, S.T., Hatada, H., Cassy, W.: Intracellular analysis of antidromically and synaptically activated lateral reticular neurons. Brain Res. 43, 629–634 (1972a)

    Google Scholar 

  • Kitai, S.T., Tanaka, T., Tsukahara, N., Yu, H.: The facial nucleus of cat: Antidromic and synaptic activation and peripheral nerve representation. Exp. Brain Res. 16, 161–183 (1972b)

    Google Scholar 

  • Kitai, S.T., DeFrance, J.F., Hatada, K., Kennedy, D.T.: Electrophysiological properties of lateral reticular nucleus cells: II. Synaptic activation. Exp. Brain Res. 21, 419–432 (1974)

    Google Scholar 

  • Kuno, M., Miyahara, J.T.: Factors responsible for multiple discharge of neurones in Clarke's Column. J. Neurophysiol. 31, 624–638 (1968)

    Google Scholar 

  • Kuno, M., Llinás, R.: Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurons of the cat. J. Physiol. (Lond.) 210, 807–821 (1970)

    Google Scholar 

  • Künzle, H.: The topographic organization of spinal afferents to the lateral reticular nucleus of the cat. J. comp. Neurol. 149, 103–116 (1973)

    Google Scholar 

  • Kuypers, H.G.J.M.: An anatomical analysis of corticobulbar connections to the pons and lower brain stem in the cat. J. Anat. (Lond.) 92, 198–218 (1958)

    Google Scholar 

  • Lorente de Nó, R.: A study of nerve physiology. Studies from Rockefeller Inst. 132, Chapt. 16, 1947

  • Mannen, H.: Contribution to the morphological study of dendritic arborization in the brain stem. In: Progr. Brain Res. 21A, p. 131–162. Ed. by Tokizane, J.P. Schadé. Amsterdam: Elsevier 1966

    Google Scholar 

  • Morin, F., Kennedy, D.T., Gardner, E.: Spinal afferents to the lateral reticular nucleus. I. An histological study. J. comp. Neurol. 126, 511–522 (1966)

    Google Scholar 

  • Nelson, P.G., Frank, K.: Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory postsynaptic potential. J. Neurophysiol. 30, 1097–1113 (1967)

    Google Scholar 

  • Oscarsson, O., Rosén, I.: Response characteristics of reticulo-cerebellar neurones activated from spinal afferents. Exp. Brain Res. 1, 320–328 (1966)

    Google Scholar 

  • Porter, R.: Antidromic responses of hypoglossal motoneurons. Exp. Neurol. 20, 624–634 (1968)

    Google Scholar 

  • Ramón-Moliner, E., Nauta, W.J.H.: The isodendritic core of the brain stem. J. comp. Neurol. 126, 311–336 (1966)

    Google Scholar 

  • Rosén, I., Scheid, P.: Cutaneous afferent responses in neurones of the lateral reticular nucleus. Brain Res. 43, 259–263 (1972)

    Google Scholar 

  • Rosén, I., Scheid, P.: Patterns of afferent input to the lateral reticular nucleus of the cat. Exp. Brain Res. 18, 242–255 (1973a)

    Google Scholar 

  • Rosén, I., Scheid, P.: Responses in the spino-cerebellar pathway to stimulation of cutaneous mechanoreceptors. Exp. Brain Res. 18, 268–278 (1973b)

    Google Scholar 

  • Sasaki, K.: Electrophysiological studies on oculomotor neurons of the cat. Jap. J. Physiol. 13, 287–302 (1963)

    Google Scholar 

  • Sasaki, K., Strata, P.: Responses evoked in the cerebellar cortex by stimulating mossy fiber pathways to the cerebellum. Exp. Brain Res. 3, 95–110 (1967)

    Google Scholar 

  • Szentágothai, J.: Anatomical aspects of junctional transformation. In: Information processing in the nervous system. Ed. by R.W. Gerard, p. 119–136. Amsterdam 1964

  • Thomas, R.C., Wilson, V.J.: Precise localization of Renshaw cells with a new marking technique. Nature (Lond.) 206, 211–213 (1965)

    Google Scholar 

  • Thomas, R.C., Wilson, V.J.: Marking single neurons by staining with intracellular recording microelectrodes. Science 151, 1538–1539 (1986)

    Google Scholar 

  • Tsukahara, N., Toyama, K., Kosaka, K.: Electrical activity of red nucleus neurons investigated with intracellular microelectrodes. Exp. Brain Res. 4, 18–33 (1967)

    Google Scholar 

  • Valverde, F.: Reticular formation of pons and medulla oblongata. A Golgi study. J. comp. Neurol. 116, 71–99 (1961)

    Google Scholar 

  • Verhaart, W.J.C.: The lateral reticular nucleus of the medulla oblongata and the passing fiber systems of the lateral funiculus. Acta psychiat. scand. 32, 211–229 (1957)

    Google Scholar 

  • Walberg, F.: The lateral reticular nucleus of the medulla oblongata in mammals. A comparative anatomical study. J. comp. Neurol. 96, 283–344 (1952)

    Google Scholar 

  • Walberg, F.: Descending connections to the lateral reticular nucleus. An experimental study in the cat. J. comp. Neurol. 109, 363–389 (1958)

    Google Scholar 

  • Zangger, P., Wiesendanger, M.: Excitation of lateral reticular neurones by collaterals of the pyramidal tract. Exp. Brain Res. 17, 144–151 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by U.S. Public Health Service Grants NB 00405, RR 5384 and National Science Foundation Grant GB 35532.

The authors express their gratitude to Mss. D. Agresta, C. Casper and B. Pantelis for their patient and skillful assistance in histology, photography and preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitai, S.T., Kennedy, D.T., Defrance, J.F. et al. Electrophysiological properties of lateral reticular nucleus cells: I. Antidromic activation. Exp Brain Res 21, 403–418 (1974). https://doi.org/10.1007/BF00237903

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237903

Key words

Navigation