Skip to main content
Log in

Termination of cortical afferents on identified neurons in the caudate nucleus of the cat

A combined Golgi-EM degeneration study

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

A combined Golgi/electron microscopic technique was used to investigate the fine structure and synaptology of Golgi-stained spiny neurons in the caudate nucleus of the cat. In order to study the termination sites of cortical afferents on Golgistained spiny neurons, cortical fibres were caused to degenerate by making extensive cortical lesions 3 days prior to fixation of the animals.

When examined in the electron microscope, perikarya of labelled spiny neurons have a round nucleus, a few mitochondria and microtubules, and a poorly developed Golgi apparatus and rough endoplasmic reticulum. Only rarely are axo-somatic contacts seen. Labelled dendrites exhibit a moderate number of microtubules and sometimes elongated mitochondria. Numerous labelled spines are seen in the vicinity of their parent dendrites. They are contacted by smaller type I and type III boutons and larger type IV boutons (Hassler et al. 1978). Large boutons filled with clear round vesicles establish symmetric contacts with labelled dendritic shafts.

Degenerating boutons of cortical afferents are seen in contact with spines and, more rarely, with dendritic shafts of Golgi-stained spiny neurons. All degenerating boutons synapsing with labelled structures are found some distance from the cell body. No contacts of degenerating cortical boutons with the soma or with stem dendrites of Golgi-stained spiny neurons are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adinolfi AM, Pappas GD (1968) The fine structure of the caudate nucleus of the cat. J Comp Neurol 133: 167–184

    Google Scholar 

  • Albe-Fessard D, Rocha-Miranda CE, Oswaldo-Cruz E (1960) Activités evoquées dans le noyau caudé du chat en résponse à des types divers d'afférences, parite 2 (Etude microphysiologique). Electroencephalogr Clin Neurophysiol 12: 649–661

    Google Scholar 

  • Blackstad TW (1975) Electron microscopy of experimental axon degeneration in photochemically modified Golgi preparations: a procedure for precise mapping of nervous connections. Brain Res 95: 191–210

    Google Scholar 

  • Buchwald NA, Price DD, Vernon L, Hull CD (1973) Caudate intracellular responses to thalamic and cortical inputs. Exp Neurol 38: 311–323

    Google Scholar 

  • Carman JB, Cowan WM, Powell TPS (1963) The organization of the cortico-striate connexions in the rabbit. Brain 86: 525–562

    Google Scholar 

  • Carpenter MB (1976) Anatomical organization of the corpus striatum and related nuclei. In: Yahr MD (ed) The basal ganglia. Raven Press, New York, pp 1–36

    Google Scholar 

  • Colonnier M (1964) Experimental degeneration in the cerebral cortex. J Anat 98: 47–53

    Google Scholar 

  • DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res 114: 245–256

    Google Scholar 

  • Fairén A, Peters A, Saldanha J (1977) A new procedure for examining Golgi-impregnated neurons by light and electron microscopy. J Neurocytol 6: 311–337

    Google Scholar 

  • Foix C, Nicolesco J (1925) Les noyaux gris centraux et la region mesencephalo-sous optique. Masson, Paris

    Google Scholar 

  • Fox CA, Andrade AN, Hillman DE (1971/72) The spiny neurons in the primate striatum. A Golgi and electron microscopic study. J Hirnforsch 13: 181–201

    Google Scholar 

  • Garcia-Rill E, Nieto A, Adinolfi A, Hull CD (1979) Projections to the neostriatum from the cat precruciate cortex. Anatomy and physiology. Brain Res 170: 393–407

    Google Scholar 

  • Ghetti B, Wisniewski HM (1972) On degeneration of terminals in the cat striate cortex. Brain Res 44: 630–635

    Google Scholar 

  • Glees P (1944) The anatomical basis of corticostriate connections. J Anat 78: 47–51

    Google Scholar 

  • Gray EG (1964) The fine structure of normal and degenerating synapses of the central nervous system. Arch Biol 75: 285–299

    Google Scholar 

  • Hassler R, Bak IJ, Usunoff KG, Choi WB (1975) Synaptic organization of the descending and ascending connections between the striatum and the substantia nigra in the cat. In: Boissier JR, Hippius H, Pichot P (eds) Neuropsychopharmacology. Excerpta Medica, Amsterdam, pp 397–411

    Google Scholar 

  • Hassler R, Chung JW, Rinne U, Wagner A (1978) Selective degeneration of two out of the nine types of synapses in cat caudate nucleus after cortical lesions. Exp Brain Res 31: 67–80

    Google Scholar 

  • Jones EG, Powell TPS (1969) Morphological variations in the dendritic spines of the neocortex. J Cell Sci 5: 509–529

    Google Scholar 

  • Kemp JM (1968) An electron microscopic study of the termination of afferent fibres in the caudate nucleus. Brain Res 11: 464–467

    Google Scholar 

  • Kemp JM (1970) The site of termination of afferent fibres on the neurons of the caudate nucleus. J Physiol (Lond) 210: 17–18

    Google Scholar 

  • Kemp JM, Powell TPS (1970) The cortico-striate projection in the monkey. Brain 93: 525–546

    Google Scholar 

  • Kemp JM, Powell TPS (1971a) The structure of the caudate nucleus of the cat. Light and electron microscopy. Philos Trans R Soc Lond [Biol] 262: 383–401

    Google Scholar 

  • Kemp JM, Powell TPS (1971b) The synaptic organization of the caudate nucleus. Philos Trans R Soc Lond [Biol] 262: 403–412

    Google Scholar 

  • Kemp JM, Powell TPS (1971c) The site of termination of afferent fibres in the caudate nucleus. Philos Trans R Soc Lond [Biol] 262: 413–428

    Google Scholar 

  • Kemp JM, Powell TPS (1971d) The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus. A Study with the Golgi method. Philos Trans R Soc Lond [Biol] 262: 429–439

    Google Scholar 

  • Kitai ST, Kocsis JD, Wood J (1976a) Origin and characteristics of the cortico-caudate afferents. An anatomical and electrophysiological study. Brain Res 118: 137–141

    Google Scholar 

  • Kitai ST, Kocsis JD, Preston RJ, Sugimori M (1976b) Monosynaptic inputs to caudate neurons identified by intracellular injection of horseradish peroxidase. Brain Res 109: 601–606

    Google Scholar 

  • Kocsis JD, Sugimori M, Kitai ST (1977) Convergence of excitatory synaptic inputs to caudate spiny neurons. Brain Res 124: 403–413

    Google Scholar 

  • Mori S (1966) Some observations on the fine structure of the corpus striatum of the rat brain. Z Zellforsch Mikrosk Anat 70: 461–488

    Google Scholar 

  • Pasik P, Pasik T, DiFiglia M (1976) Quantitative aspects of neuronal organization in the neostriatum of the macaque monkey. In: Yahr MD (ed) The basal ganglia. Raven Press, New York, pp 57–90

    Google Scholar 

  • Pasik T, Pasik P, DiFiglia M (1977) Interneurons in the neostriatum of monkeys. In: Szentágothai J, Hámori J, Vizi ES (eds) Neuron concept today. Akadémiai Kiadó, Budapest, pp 153–162

    Google Scholar 

  • Rocha-Miranda CE (1965) Single unit analysis of cortex-caudate connections. Electroencephalogr Clin Neurophysiol 19: 237–247

    Google Scholar 

  • Somogyi P, Hodgson AJ, Smith AD (1979a) An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4: 1805–1852

    Google Scholar 

  • Somogyi P, Smith AD (1979b) Projection of neostriatal spiny neurons to the substantia nigra. Application of a combined Golgi-staining and horseradish transport procedure at both light and electron microscopic levels. Brain Res 178: 3–15

    Google Scholar 

  • Sotelo C, Palay SL (1968) The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells. J Cell Biol 36: 151–179

    Google Scholar 

  • Vogt C, Vogt O (1920) Zur Lehre der Erkrankungen des striären Systems. J Psychol Neurol (Lpz) 25: 628–846 (Ergänzungsheft 3)

    Google Scholar 

  • Webster KE (1961) Cortico-striate interrelations in the albino rat. J Anat 95: 532–544

    Google Scholar 

  • Webster KE (1965) The cortico-striatal projection in the cat. J Anat 99: 329–337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frotscher, M., Rinne, U., Hassler, R. et al. Termination of cortical afferents on identified neurons in the caudate nucleus of the cat. Exp Brain Res 41, 329–337 (1981). https://doi.org/10.1007/BF00238890

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238890

Key words

Navigation