Skip to main content
Log in

Eine faktorenanalyse von schwellen subcorticaler reizantworten

A factor analysis of subcortical evoked potential thresholds

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

In 35 cats (encéphale isolé) evoked responses were elicited and recorded with bipolar electrodes from the amygdala, hippocampus, septum, dorsomedial thalamic nucleus, posterior hypothalamus, and mesencephalic reticular formation. Correlations between the thresholds of responses in different areas following stimulation of other areas were described by a factor analysis according to the principal axis method. 435 coefficients of correlation were calculated and reproduced by a matrix of 5 factors for the purpose of data reduction. Each factor represented high threshold correlations between the efferent projections of one region, which suggests that the activity of the stimulated site exerts a major influence on the evoked potential threshold. This is supported by pharmacological studies [27, 49]. Covariations of responses recorded in the same nucleus were always found, if the latencies exceeded 11 msec. The factor matrix indicated threshold correlations between: the efferent projections of the hypothalamus and several long latency afferent projections to the hippocampus (positive correlations); reticulo-limbic connections and “primary” efferent connections of the amygdala and hippocampus (positive correlations); evoked potentials following reticular and amygdaloid stimulation (negative correlations); the efferent projections of the dorsomedial thalamic nucleus and long latency limbic projections to the mesencephalic reticular formation (positive correlations). The interpretation of these relationships confirms and extends some well known models of relations between subcortical regions. The applicability of factor analysis to evoked potential thresholds is discussed with regard to the linearity of the mathematical method.

Zusammenfassung

Zur Beschreibung von Korrelationen zwischen zahlreichen elektrophysiologischen Daten aus verschiedenen Hirngebieten wurde eine Faktorenanalyse nach der Hauptachsenmethode gerechnet. Ausgangsmaterial dieser Analyse waren Schwellen subcortical ausgelöster und abgeleiteter Antwortpotentiale auf Einzelreize. Das resultierende Faktorenmuster ermöglicht ein quantitatives Konzept der Schwellendetermination subcorticaler Reizantworten und zugleich ein Modell von Funktionsbeziehungen zwischen einigen Hirnstrukturen. Die Reizungen und Ableitungen erfolgten bei 35 encéphale isolé-Katzen mit Hilfe bipolarer Elektroden in folgenden Arealen: Amygdala, Hippocampus, Septum, N. dorsomedialis Thalami, Hypothalamus posterior und Formatio reticularis mesencephali. Es wurden 435 Korrelationskoeffizienten zwischen den Schwellen von 30 subcorticalen Verbindungen gebildet und zum Zwecke einer Datenreduktion durch eine Matrix von 5 Faktoren reproduziert.

  1. 1.

    Jeder Faktor repräsentierte hohe Schwellenkorrelationen zwischen den efferenten Projektionen jeweils eines Kerngebietes. Demnach nimmt im allgemeinen die Aktivität des Reizortes den größten Einfluß auf die Schwelle eines Antwortpotentials. Diese Hypothese ist durch pharmakologische Untersuchungen belegt worden [27]

  2. 2.

    Kovariationen von Reizantworten mit identischen Ableiteorten ergaben sich ausnahmslos, wenn die Latenzzeiten mehr als 11 msec betrugen.

  3. 3.

    Zusätzlich zeigte die Faktorenmatrix Schwellenkorrelationen zwischen:

  1. a)

    den hypothalamischen Efferenzen und mehreren hippokampalen Afferenzen langer Latenz (positive Korrelationen)

  2. b)

    retikulo-limbischen Verbindungen und „primären” Efferenzen von Amygdala und Hippocampus (positive Korrelationen)

  3. c)

    Antwortpotentialen, die durch Reizung der Formatio reticularis, und solchen, die durch Reizung des N. Amygdalae ausgelöst waren (negative Korrelationen)

  4. d)

    den Efferenzen des N. dorsomedialis Thalami und limbischen Projektionen langer Latenz zur mesencephalen Formatio reticularis (positive Korrelationen)

Die Interpretation dieser Zusammenhänge bestätigt und erweitert einige bekannte Modelle von Beziehungen zwischen subcorticalen Kerngebieten. Abschließend wird mit Rücksicht auf die Linearität der mathematischen Methode die Anwendbarkeit der Faktorenanalyse auf Schwellen von Reizantworten diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. xxAdey, W.R.: Organization of the rhinencephalon. In: Reticular Formation of the Brain. Henry Ford Hospital Symposium, pp. 621–644. Ed. by H.H. xxJasper, L.D. xxProctor, R.S. xxKnighton, W.C. xxNoshay and R.T. xxCostello. Boston: Little, Brown and Co. 1958.

    Google Scholar 

  2. —, C.W. xxDunlop and S. xxSunderland: A survey of rhinencephalic interconnections with the brain stem. J. comp. Neurol. 110, 173–203 (1958).

    Google Scholar 

  3. —, J.P. xxSegundo and R.B. xxLivingston: Corticifugal influences on intrinsic brain-stem conduction in cat and monkey. J. Neurophysiol. 20, 1–16 (1957).

    Google Scholar 

  4. xxBan, T.: The septo-preoptico-hypothalamic system and its autonomic function. In: Progress in Brain Research, vol. 21A, pp. 1–43. Ed. by T. xxTokizane and J.P. xxSchadé. Amsterdam-London-New York: Elsevier 1966.

    Google Scholar 

  5. xxBrazier, M.A.B.: The action of anesthetics on the nervous system. In: Brain Mechanisms and Consciousness, pp. 163–193. Ed. by E.D. xxAdrian, F. xxBremer and H.H. xxJasper. Oxford: Blackwell 1954.

    Google Scholar 

  6. xxBuchwald, N.A., and F.R. xxErvin: Evoked potentials and behavior. A study of responses to subcortical stimulation in the awake, unrestrained animal. Electroenceph. clin. Neurophysiol. 9, 477–496 (1957).

    Google Scholar 

  7. xxBureš, J., O. xxBurešová and E. xxFifková: The effect of cortical and hippocampal spreading depression on activity of bulbopontine reticular units in the rat. Arch. ital. Biol. 99, 23–32 (1961).

    Google Scholar 

  8. xxChang, H.-T.: The evoked potentials. In: Handbook of Physiology, section 1, Neurophysiology, vol. I, pp. 299–313. Ed. by J. xxField, H.W. xxMagoun and V.H. xxHall. Washington, D.C.: American Physiological Society 1959.

    Google Scholar 

  9. xxClemente, C.D., and M.B. xxSterman: Limbic and other forebrain mechanisms in sleep induction and behavioral inhibition. In: Progress in Brain Research, vol. 27, pp. 34–47. Ed. by W.R. xxAdey and T. xxTokizane. Amsterdam-London-New York: Elsevier 1967.

    Google Scholar 

  10. xxCreutzfeldt, O.D., F.R. xxBell and W.R. xxAdey: The activity of neurons in the amygdala of the cat following afferent stimulation. In: Progress in Brain Research, vol. 3, pp. 31–49. Ed. by W. xxBargmann and J.P. xxSchadé. Amsterdam-London-New York: Elsevier 1963.

    Google Scholar 

  11. xxDemetrescu, M., and M. xxDemetrescu: Ascending inhibition and activation from the lower brain stem: the influence of pontine reticular stimulation on thalamo-cortical evoked potentials in cat. Electroenceph. clin. Neurophysiol. 14, 602–620 (1962).

    Google Scholar 

  12. xxDomino, E.F.: A pharmacological analysis of the functional relationship between the brain stem arousal and diffuse thalamic projection systems. J. Pharmacol. (Baltimore) 115, 449–463 (1955).

    Google Scholar 

  13. xxElul, R.: Regional differences in the hippocampus of the cat. II. Projections of the dorsal and ventral hippocampus. Electroenceph. clin. Neurophysiol. 16, 489–502 (1964).

    Google Scholar 

  14. xxEuler, C.v., and J.D. xxGreen: Excitation, inhibition and rhythmical activity in hippocampal pyramidal cells in rabbit. Acta physiol. scand. 48, 110–125 (1960).

    Google Scholar 

  15. xxFeindel, W., and P. xxGloor: Comparison of electrographic effects of stimulation of the amygdala and brain stem reticular formation in cats. Electroenceph. clin. Neurophysiol. 6, 389–402 (1954).

    Google Scholar 

  16. xxGangloff, H., u. M. xxMonnier: Topische Wirkung des Phenobarbitals auf Cortex, Rhin-encephalon, Nucleus caudatus, Thalamus und Substantia reticularis des Kaninchens. Arch. exp. Path. Pharmakol. 231, 211–218 (1957).

    Google Scholar 

  17. xxGergen, J.A.: Functional properties of the hippocampus in the sub-human primate. In: Progress in Brain Research, vol. 27, pp. 442–461. Ed. by W.R. xxAndey and T. xxTokizane. Amsterdam-London-New York: Elsevier 1967.

    Google Scholar 

  18. xxGloor, P.: Electrophysiological studies on the connections of the amygdaloid nucleus in the cat. Part I: The neuronal organization of the amygdaloid projection system. Electroenceph. clin. Neurophysiol. 7, 223–242 (1955).

    Google Scholar 

  19. xxGrastyán, E., K. xxLissák, I. xxMadarász and H. xxDonhoffer: Hippocampal electrical activity during the development of conditioned reflexes. Electroenceph. clin. Neurophysiol. 11, 409–430 (1959).

    Google Scholar 

  20. xxGreen, J.D., and W.R. xxAdey: Electrophysiological studies of hippocampal connections and excitability. Electroenceph. clin. Neurophysiol. 8, 245–262 (1956).

    Google Scholar 

  21. —, and A.A. xxArduini: Hippocampal electrical activity in arousal. J. Neurophysiol. 17, 533–557 (1954).

    Google Scholar 

  22. xxHarman, H.H.: Modern factor analysis. Chicago: The University of Chicago Press 1960.

    Google Scholar 

  23. xxHaseloff, O.W., u. H.J. xxHoffmann: Kleines Lehrbuch der Statistik. Berlin: Walter de Gruyter und Co. 1965.

    Google Scholar 

  24. xxHernández-Peón, R.: zit. nach xxHernández-Peón, R.: Die neuralen Grundlagen des Schlafes. Arzneimittel-Forsch. 15, 1099–1118 (1965).

    Google Scholar 

  25. — Central neuro-humoral transmission in sleep and wakefulness. In: Progress in Brain Research, vol. 18, pp. 96–116. Ed. by K. xxAkert, C. xxBally and J.P. xxSchadé. Amsterdam-London-New York: Elsevier 1965.

    Google Scholar 

  26. xxHolm, E.: Eine Faktorenanalyse von evoked-potential-Schwellen nach der Hauptachsenmethode. Pflügers Arch. ges. Physiol. 291, R28 (1966).

    Google Scholar 

  27. -xxHolm, E. Schlafmittelwirkungen auf subkortikale Hirngebiete. In: Neurophysiologische Aspekte des Schlafes. Hrsg. von U.J. xxJovanović. München: J.A. Barth (im Druck).

  28. xxHolm, E., H. xxHeinemann, K.-F. xxHamann and M. xxKlinger: Threshold covariations of subcortical evoked potentials: a factor analysis. Proc. Int. Union Physiol. Sci., vol. 7 (1968).

  29. —, R. xxKelleter u. M. xxKlinger: Wirkungen von Acetoin auf zentralnervöse Strukturen. Pflügers Arch. ges. Physiol. 294, R 61–62 (1967).

    Google Scholar 

  30. xxHuttenlocher, P.R.: Evoked and spontaneous activity in single units of medial brain stem during natural sleep and waking. J. Neurophysiol. 24, 451–468 (1961).

    Google Scholar 

  31. xxKaada, B.R.: Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of “rhinencephalic” and other structures in primates, cat and dog. Acta physiol. scand. 24, suppl. 83, 285 pp. (1951).

    Google Scholar 

  32. xxKawamura, H., Y. xxNakamura and T. xxTokizane: Effect of acute brain stem lesions on the electrical activities of the limbic system and neocortex. Jap. J. Physiol. 11, 564–575 (1961).

    Google Scholar 

  33. xxKhalifeh, R.R., W.W. xxKaelber and W.R. xxIngram: Some efferent connections of the nucleus medialis dorsalis: An experimental study in the cat. Amer. J. Anat. 116, 341–345 (1965).

    Google Scholar 

  34. xxKnighton, R.S.: zit. nach xxKaada, B.R. [siehe Lit.-Nr. 31].

  35. xxKreindler, A., and M. xxSteriade: EEG patterns of arousal and sleep induced by stimulating various amygdaloid levels in the cat. Arch. ital. Biol. 102, 576–586 (1964).

    Google Scholar 

  36. xxLissák, K., E. xxGrastyán, A. xxCsanaky, F. xxKékesi and G. xxVereby: A study of hippocampal function in the waking and sleeping animal with chronically implanted electrodes. Acta physiol. pharmacol. neerl. 6, 451–459 (1957).

    Google Scholar 

  37. xxMayer, xxCh., xxu. Ch. xxStumpf: Die Physostigminwirkung auf die Hippocampus-Tätigkeit nach Septumläsionen. Arch. exp. Path. Pharmakol. 234, 490–500 (1958).

    Google Scholar 

  38. xxMorrell, P.: Microelectrode and steady potential studies suggesting a dendritic locus of closure. In: The Moscow Colloquium on Electroencephalography of Higher Nervous Activity. Electroenceph. clin. Neurophysiol., suppl. 13, pp. 65–78 (1960). Ed. by H.H. xxJasper and G.D. xxSmirnov.

  39. xxMurphy, J.P., and E. xxGellhorn: Further investigations in diencephalic-cortical relations and their significance for the problem of emotion. J. Neurophysiol. 8, 431–447 (1945).

    Google Scholar 

  40. xxNauta, W.J.H.: Hippocampal projections and related neural pathways to the mid-brain in the cat. Brain 81, 319–340 (1958).

    Google Scholar 

  41. xxParmeggiani, P.L.: Reizeffekte aus Hippocampus und Corpus mammillare der Katze. Helv. Physiol. Acta 18, 523–536 (1960).

    Google Scholar 

  42. xxPetsche, H., xxCh. xxStumpf and G. xxGogolak: The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells. Electroenceph. clin. Neurophysiol. 14, 202–211 (1962).

    Google Scholar 

  43. xxReinoso-Suárez, F.: Topographischer Hirnatlas der Katze. Darmstadt: E. Merck 1961.

    Google Scholar 

  44. xxSager, O., and S. xxButkhuzi: Electrographical study of the relationship between the dorsomedian nucleus of the thalamus and the rhinencephalon (hippocampus and amygdala). Electroenceph. clin. Neurophysiol. 14, 835–846 (1962).

    Google Scholar 

  45. xxStumpf, xxCh.: The fast component in the electrical activity of rabbit's hippocampus. Electroenceph. clin. Neurophysiol. 18, 477–486 (1965).

    Google Scholar 

  46. xxÜberla, K.: Faktorenanalyse in der Medizin. Beiträge zur Methodik und Probleme der Anwendung. Habilitationsschrift, Mainz 1967.

  47. xxUrsin, H., and B.R. xxKaada: Functional localization within the amygdaloid complex in the cat. Electroenceph. clin. Neurophysiol. 12, 1–20 (1960).

    Google Scholar 

  48. xxValverde, F.: Amygdaloid projection field. In: Progress in Brain Research, vol. 3, pp. 20–30. Ed. by W. xxBargmann and J.P. xxSchadé. Amsterdam-London-New York: Elsevier 1963.

    Google Scholar 

  49. xxVieth, J.B., E. xxHolm and P.R. xxKnopp: Electrophysiological studies on the action of Mogadon® on central nervous structures of the cat. A comparison with pentobarbital. Arch. int. Pharmacodyn. 171, 323–338 (1968).

    Google Scholar 

  50. xxWeiss, T.: Neurophysiologie und Verhaltensphysiologie der Hippokampusformation und des „limbischen Systems”. In: Probleme der Physiologie des Gehirns, pp. 221–253. Hrsg. von W. xxRüdiger. Berlin: VEB Verlag Volk und Gesundheit 1965.

    Google Scholar 

  51. xxWells, J.: The pathway from the dorsomedial thalamus to the frontal lobe. Exp. Neurol. 14, 338–350 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holm, E., Schaefer, H. Eine faktorenanalyse von schwellen subcorticaler reizantworten. Exp Brain Res 8, 79–96 (1969). https://doi.org/10.1007/BF00234927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234927

Key words

Navigation