Skip to main content
Log in

Calcium and epileptogenesis

  • Overview
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Conclusions

In conclusion, both acutely induced and chronic epilepsies are associated with an enhanced Ca uptake capability into nerve cells. This finding may in future help to identify areas in the brain with chronic epileptogenic potential and thereby facilitate the study of mechanisms involved in the generation of chronic epilepsies. The enhanced Ca uptake observed in many experimental and aquired epilepsies itself may depend on Ca fluxes through voltage or NMDA operated channels. Intrinsic currents may be involved in amplifying EPSP's into PDS by relieving the block which Mg exerts normally on NMDA operated ionophores. The many consequences of decreases in [Ca]o as those of the regularly associated rises in [K]o provide positive feedback which supports the initiation and spread as well as the maintenance of ictal activity. The resulting intracellular load with Ca may be one factor involved in the degeneration of nerve cells as a result of epileptic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ault B, Evans RH, Francis AA, Oakes DJ, Watkins JC (1980) Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations. J Physiol (Lond) 307: 413–428

    Google Scholar 

  • Ayala GF, Dichter M, Gumnit RJ, Matsumoto M, Spencer W (1973) Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. Brain Res 52: 1–17

    Google Scholar 

  • Balcar VJ, Pumain R, Mark J, Mandel P (1978) GABA-mediate inhibition in the epileptogenic focus, a process, which may be involved in the mechanisms of the cobalt-induced epilepsy. Brain Res 154: 182–185

    Google Scholar 

  • Bakay RA, Harris AB (1981) Neurotransmitter, receptor and biochemical changes in monkey cortical epileptic foci. Brain Res 206: 387–404

    Google Scholar 

  • Benninger C, Kadis J, Prince DA (1980) Extracellular calcium and potassium changes in hippocampal slices. Brain Res 187: 165–182

    Google Scholar 

  • Boll W, Lux HD (1985) Action of organic antagonists on neuronal calcium currents. Neurosci Lett 56: 335–339

    Google Scholar 

  • Carbone E, Lux HD (1984) A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J 46: 413–418

    Google Scholar 

  • Coan EJ, Collingridge CL (1985). Magnesium ions block an Nmethyl-D-aspartate receptor mediated component of synaptic transmission in rat hippocampus, Neurosci Lett 53: 21–26

    Google Scholar 

  • Connors BW (1984) Initiation of synchronized neuronal bursting in neocortex. Nature 310: 685–687

    Google Scholar 

  • Croucher MJ, Collins JF, Meldrum BS (1982) Anticonvulsant action of excitatory amino acid antagonists. Science 216: 899–901

    Google Scholar 

  • Deisz RA, Lux HD (1985) Gamma-aminobutyric acid induced depression of calcium induced currents of chick sensory neurons. Neurosci Lett 56: 205–210

    Google Scholar 

  • Dunlap K, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol (Lond) 317: 519–535

    Google Scholar 

  • Eckert R, Chad JE (1984) Inactivation of Ca channels. Prog Biophys Mol Biol 44: 215–267

    Google Scholar 

  • Evans MC, Griffiths T, Meldrum BS (1984) Kainic acid seizures and the reversibility of calcium loading in vulnerable neurones in the hippocampus. Neuropath Appl Neurobiol 10: 285–302

    Google Scholar 

  • Farber JL (1981) The role of calcium in cell death. Life Sci 29: 1289–1295

    Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1957) The action of calcium of the electrical properties of the squid axons. J Physiol (Lond) 37: 218–224

    Google Scholar 

  • Galvan M, Grafe P, ten Bruggencate G (1982) Convulsive actions of 4-aminopyridine on neurones and extracellular K+ and Ca2+ activities in guinea-pig olfactory cortex slices, In: Klee MR, Lux HD, Speckmann EJ (eds) Pharmacology and physiology of epileptogenic phenomena. Raven, New York, pp 353–361

    Google Scholar 

  • Griffith T, Evans MC, Meldrum BS (1982) Intracellular sites of early Ca2+ accumulation in the rat hippocampus during status epilepticus. Neurosci Lett 30: 329–334

    Google Scholar 

  • Gutnick MJ, Prince DA (1972) Thalamocortical relay neurons: antidromic invasion of spikes from a cortical epileptogenic focus. Science 176: 424–426

    Google Scholar 

  • Gutnick MJ, Connors BW, Prince DA (1982) Mechanisms of neocortical epileptogenesis in vitro. J Neurophysiol 48: 1321–1335

    Google Scholar 

  • Hablitz JJ (1984) Picrotoxin-induced epileptiform activity in hippocampus: role of endogenous versus synaptic factors. J Neurophysiol 51: 1011–1027

    Google Scholar 

  • Hablitz JJ, Lundervold A (1981) Hippocampal excitability and changes in extracellular K+. Exp Neurol 71: 410–420

    Google Scholar 

  • Hablitz JJ, Heinemann U, Lux HD (1986) Reducing of extracellular Ca2+ activates a transient inward current in chick dorsal root ganglion cells. Biophys J (in press)

  • Hamon B, Heinemann U (1986) Effects of bicuculline and GABA on extracellular free Ca2+ in ‘in vitro’ hippocampal slices. Exp Brain Res 64: 27–36

    Google Scholar 

  • Heinemann U, Dietzel I (1984) Extracellular potassium concentration in chronic alumina cream foci of cats. J Neurophysiol 52: 421–434

    Google Scholar 

  • Heinemann U, Hamon B, Konnerth A, Wadman WJ (1986) Stimulus-dependent synaptic plasticity in area CA1 of the in vitro hippocampal slice of rats In: Heinemann U, Klee M, Nehrer E, Singer W (eds) Calcium electrogenesis and neuronal functioning. Springer, Berlin Heidelberg New York Tokyo, pp 291–299

    Google Scholar 

  • Heinemann U, Hamon B, Konnerth (1984) GABA and baclofen reduce changes in extracellular free calcium in area CA1 of rat hippocampal slices. Neurosci Lett 47: 295–300

    Google Scholar 

  • Heinemann U, Konnerth A, Lux HD (1981) Stimulation induced changes in extracellular free calcium in normal cortex and chronic alumina cream foci of cats. Brain Res 213: 246–250

    Google Scholar 

  • Heinemann U, Konnerth A, Louvel J, Lux HD, Pumain R (1982) Changes in extracellular free Ca2+ in normal and epileptic sensorimotor cortex of cats. In: Klee MR, Lux HD, Speckmann EJ (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 29–35

    Google Scholar 

  • Heinemann U, Lambert JDC (1986) Changes in extracellular calcium and magnesium concentration and their consequences for the development of seizure activity. In: Nistico HG, Morselli PL, Lloyd KG, Fariello RG, Engel J jr (eds) Neurotransmitters, seizure and epilepsy, III. Raven Press, New York, pp 65–74

    Google Scholar 

  • Heinemann U, Louvel J (1983) Changes in [Ca2+]o and [K+]o during repetitive electrical stimulation and during pentetrazol induced seizure activity in the sensorimotor cortex of cats. Pflügers Arch 398: 310–317

    Google Scholar 

  • Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27: 237–243

    Google Scholar 

  • Heinemann U, Pumain R (1980) Extracellular calcium activity changes in cat sensorimotor cortex induced by iontophoretic application of aminoacids. Exp Brain Res 40: 247–250

    Google Scholar 

  • Heinemann U, Konnerth A, Pumain R, Wadman W (1986a) Alterations of extracellular calcium sinks in chronic epileptic brain tissue. In: Ward AA, Woodbury DM, Porter RJ (eds) Basis mechanisms of the epilepsies: cellular and molecular aspects. Advances in neurology, Vol 44, eds AV DelgadoEscueta. Raven Press, New York (in press)

    Google Scholar 

  • Heinemann U, Hamon B, Wadmann WJ, Walther H (1986b) Changes in extracellular Ca2+ in relation to long term potentiation and kindling. In: Heinemann U, Klee M, Neher E, Singer W (eds) Calcium electrogenesis and neuronal functioning. Springer, Berlin Heidelberg New York Tokyo (in press)

    Google Scholar 

  • Hille B (1968) Charges and potentials at the nerve surface: divalent ions and pH. J Gen Physiol 51: 221–236

    Google Scholar 

  • Hofmeier G, Lux HD (1981) The time courses of intracellular free calcium and related electrical effects after injection of CaCl2 into neurons of the snail, Helix pomatia. Pflügers Arch 391: 242–251

    Google Scholar 

  • Hotson JR, Prince DA (1980) A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J Neurophysiol 43: 409–419

    Google Scholar 

  • Jefferys JGR, Haas HL (1982) Synchronized bursting of CA hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300: 448–450

    Google Scholar 

  • Johnston D, Brown TH (1981) Giant synaptic potential hypothesis for epileptiform activity. Science 211: 294–297

    Google Scholar 

  • Jung R, Toennies JF (1950) Hirnelektrische Untersuchungen über Entstehung und Erhaltung von Krampfentladungen: die Vorgänge am Reizort und die Bremsfähigkeit des Gehirns. Arch Psychiat Z Neurol 185: 701–735

    Google Scholar 

  • Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol (Lond): 481–492

  • Kamphuis W, Wadman WJ, Buis RM, Lopes da Silva FH (1986) Decrease in number of hippocampal gamma-amino butyric acid (GABA) immunoreactive cells in the rat kindling model of epilepsy. Exp Brain Res 491–495

  • King GL, Dingledine R, Giacchino JL, McNamara JO (1985) Abnormal neuronal excitability in hippocampal slices from kindled rats. J Neurophysiol 54: 1295–1304

    Google Scholar 

  • Klee MR, Faber DS, Heiss WD (1973) Strynchnine and pentylenetetrazol-induced changes of excitability in Aplysia neurons. Science 179: 1133–1136

    Google Scholar 

  • Konnerth A, Heinemann U (1983) Presynaptic involvement in frequency facilitation in the hippocampal slice. Neurosci Lett 42: 255–260

    Google Scholar 

  • Konnerth A, Heinemann U, Lux HD (1986) Burst generation in low calcium solutions in the hippocampal slice. In: Heinemann U, Klee M, Neher E, Singer W (eds) Calcium electrogenesis and neuronal functioning. Springer, Berlin Heidelberg New York Tokyo (in press)

    Google Scholar 

  • Konnerth A, Heinemann U, Yaari Y (1984) Slow transmission of neural activity in hippocampal area CA1 in absence of active chemical synapses. Nature 307: 69–71

    Google Scholar 

  • Konnerth A, Heinemann U, Yaari Y (1986) Nonsynaptic epileptogenesis at the mammalian hippocampus in vitro. I. Development of seizure-like activity in low extracellular calcium. J Neurophysiol 56: 409–438

    Google Scholar 

  • Krnjevic K, Lisiewicz A (1972) Injections of calcium ions into spinal motoneurones. J Physiol (Lond) 225: 363–390

    Google Scholar 

  • Krnjevic K, Morris ME, Reiffenstein RJ, Ropert N (1982) Depth distribution and mechanism of changes in extracellular K+ and Ca2+ concentrations in the hippocampus. Can J Physiol Pharmacol 60: 1658–1671

    Google Scholar 

  • Kuhnt U, Mihaly A, Joó F (1983) Stimulation-dependent calcium binding sites in the guinea pig hippocampal slice: an electrophysiological and electron microscopic study. Brain Res 279: 19–33

    Google Scholar 

  • Lambert JDC, Heinemann U (1986) Interactions between Ca2+, Mg2+ and excitatory amino acids. In: Heinemann U, Klee M, Neher E, Singer W (eds) Calcium electrogenesis and neuronal functioning. Springer, Berlin Heidelberg New York Tokyo, pp 279–290

    Google Scholar 

  • Llinás R, Sugimori M (1980a) Electrophysiological properties of ‘in vitro’ Purkinje cell somata in mammalian cerebellar slices. J Physiol (Lond) 305: 171–195

    Google Scholar 

  • Llinás R, Sugimori M (1980b) Electrophysiological properties of ‘in vitro’ Purkinje cell dendrites in mammalian cerebellar slices. J Physiol (Lond) 305: 197–213

    Google Scholar 

  • Llinás R, Yarom Y (1981) Electrophysiology of mammalian inferior olivary neurons ‘in vitro’. Different types of voltagedependent ionic conductances. J Physiol (Lond) 305: 549–567

    Google Scholar 

  • Lloyd KG, Munari C, Bossi L, Stoeffels C, Talairach J, Morselli PL (1981) Biochemical evidence for the alterations of GABAmediated synaptic transmission in pathological brain tissue (stereo-EEG or morphological definition) from epileptic patients. In: Morselli PL, Lloyd KG, Loscher W, Meldrum B, Reynolds EH (eds) Neurotransmitter, seizures and epilepsy. Raven, New York, pp 325–338

    Google Scholar 

  • Louvel J, Aldenhoff J, Hofmeier G, Heinemann U (1982) Effect of the convulsant drug oenanthotoxin on snail neurons and on cat cortex. In: Klee MR, Lux HD, Speckmann EJ (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 47–52

    Google Scholar 

  • Louvel J, Heinemann U (1983) Changes in [Ca2+]o, [K+]o an neuronal activity during oenanthotoxin induced epilepsy. EEG Clin Neurophysiol 56: 457–466

    Google Scholar 

  • Louvel J, Abbes S, Godfraind JM, Pumain R (1986) Effect of organic calcium channel blockers on neuronal calcium-dependent processes. In: Heinemann U, Klee M, Neher E, Singer W (eds) Calcium electrogenesis and neuronal functioning. Springer, Berlin Heidelberg New York Tokyo, pp 373–383

    Google Scholar 

  • Lux HD (1980) Ionic conditions and membrane behaviour. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 63–83

    Google Scholar 

  • Lux HD, Heinemann U, Dietzel I (1986) Ionic changes an alterations in the size of the extracellular space during epileptic activity. In: Relgado-Escueta AV, Ward AA jr, Woodbury MM, Porter RJ (eds) Advances in neurology. Basic mechanisms of the epilepsies: cellular and molecular aspects. Raven, New York (in press)

    Google Scholar 

  • Marciani MG, Louvel J, Heinemann U (1982) Aspartate induced changes in extracellular free calcium in ‘in vitro’ hippocampal slices of rats. Brain Res 238: 272–277

    Google Scholar 

  • Matsumoto H, Ajmone-Marson C (1964) Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 9: 286–304

    Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltagedependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309: 261–263

    Google Scholar 

  • Menini Ch, Stutzmann JM, Laurent H, Naquet R (1980) Paroxysmal visual evoked potentials (PVEP) in the Papio papio I. Morphological and topographical characteristics. Comparison with paroxysmal discharges (DP). Electroenceph Clin Neurophysiol 50: 356–364

    Google Scholar 

  • Miles R, Wong RKS (1983) Single neurons can initiate synchronized population discharge in the CA3 region of the guinea pig hippocampus. Nature 306: 371–373

    Google Scholar 

  • Miles R, Wong RKS, Traub RD (1984) Synchronized afterdischarges in the hippocampus: contribution of local synaptic interactions. Neuroscience 12: 1179–1189

    Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz (1984) A magnesium gates glutamate-activated channels in mouse central neurones. Nature 307: 462–465

    Google Scholar 

  • Oliver MW, Miller JJ (1985) Alterations of inhibitory processes in the dentate gyrus following kindling-induced epilepsy. Exp Brain Res 57: 443–447

    Google Scholar 

  • Overweg J, Binnie CD, Meiger JWA, Meinard H, Nuijten STM, Schmaltz S, Wauquier A (1984) Double-blind placebo controlled trial of flunarizine as add on therapy in epilepsy. Epilepsia 25: 217–222

    Google Scholar 

  • Pockberger H, Rappelsberger P, Petsche H (1984) Penicillininduced epileptic phenomena in the rabbit's neocortex. I. The development of interictal spikes after epicortical application of penicillin. Brain Res 309: 247–260

    Google Scholar 

  • Prince DA (1978) Neurophysiology of epilepsy. Ann Rev Neurosci 1: 395–415

    Google Scholar 

  • Prince DA, Futamachi KJ (1970) Intracellular recordings from chronic epileptogenetic foci in the monkey. Electroenceph Clin Neurophysiol 29: 496–511

    Google Scholar 

  • Pumain R (1981) Intracellular studies in chronic epileptogenic foci reveal dendritic abnormalities. Brain Res 219: 445–450

    Google Scholar 

  • Pumain R, Heinemann U (1985) Stimulus-evoked and amino-acid induced ionic changes in rat neocortex. J Neurophysiol 53: 1–16

    Google Scholar 

  • Pumain R, Kurcewicz I, Louvel J (1983) Fast extracellular calcium transients: involvement in epileptic processes. Science 222: 177–179

    Google Scholar 

  • Pumain R, Louvel J, Chauvel P (1978) Differential alteration of cortical neurons sensitivity to excitatory amino-acids in a chronic epileptogenic focus. In: Ryall RW, Kelly JS (eds) Iontophoresis and transmitter mechanisms in the mammalian central nervous system. Elsevier, North Holland, pp 381–383

    Google Scholar 

  • Pumain R, Menini C, Heinemann U, Louvel J, Silva-Barrat C (1985) Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon ‘Papio papio’. Exp Neurol 89: 250–258

    Google Scholar 

  • Ribak CE, Harris AB, Vaughn JE, Roberts E (1979) Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsy. Science 205: 211–214

    Google Scholar 

  • Ribak CE, Reiffenstein RJ (1982) Selective inhibitory synapse loss in chronic cortical slabs: a morphological basis for epileptic susceptibility. Can J Physiol Pharmacol 60: 864–870

    Google Scholar 

  • Rutecki PA, Frank J, Johnston L and Johnston D (1985) Epileptiform activity induced by changes in extracellular potassium in hippocampus. J Neurophys 54: 1363–1374

    Google Scholar 

  • Schwartzkroin PA, Prince DA (1978) Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 147: 117–130

    Google Scholar 

  • Siesjoe, BK (1981) Cell damage in the brain: a speculative synthesis. J Cerebral Blood Flow Metabol 1: 155–185

    Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852

    Google Scholar 

  • Somjen GG (1980) Stimulus-evoked and seizure-related responses of extracellular calcium activity in spinal cord compared to those in cerebral cortex. J Neurophysiol 44: 617–632

    Google Scholar 

  • Speckmann EJ, Witte OW, Walden J (1986) Involvement of calcium ions in focal epileptic activity of the neocortex. In: Heinemann U, Klee M, Neher E, Singer W (eds) Calcium electrogenesis and neuronal functioning. Springer, Berlin Heidelberg New York Tokyo, pp 384–393

    Google Scholar 

  • Stafstrom CE, Schwindt PC, Crill WE (1982) Nevegative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro. Brain 236: 221–226

    Google Scholar 

  • Swandulla D, Lux HD (1985) A non-specific membrane conductance activated by intracellular Ca2+ elevation in bursting pacemaker neurons of Helix pomatia. J Neurophysiol 54: 1430–1443

    Google Scholar 

  • Taylor CP, Dudek FF (1984) Synchronization without activ chemical synapses during hippocampal afterdischarges. J Neurophysiol 52: 143–155

    Google Scholar 

  • Thomson AM (1986) A magnesium-sensitive post-synaptic potential in rat cerebral cortex resembles neuronal responses to Nmethylaspartate. J Physiol 370: 531–549

    Google Scholar 

  • Troitier S, Berger B, Chauvel P, Dedek J, Gay M (1981) Alterations of the cortical noradrenergic system in chronic cobalt epileptogenic foci in the rat: a histofluerence and biochemical study. Neuroscience 6: 1069–1080

    Google Scholar 

  • Ulbricht W, Wagner HU (1976) Block of potassium channels of the nodal membrane by 4-aminopyridine and its partial removal on depolarization. Pflügers Arch 367: 77–87

    Google Scholar 

  • Wadman WJ, Lopes DA, Silva FH, Leung LS (1983) Two types of interictal transients of reversed polarity in rat hippocampus during kindling. EEG Clin Neurophysiol 55: 314–319

    Google Scholar 

  • Wadman WJ, Heinemann U, Konnerth A, Neuhaus S (1985) Hippocampal slices of kindled rats reveal calcium involvement in epileptogen. Exp Brain Res 57: 404–407

    Google Scholar 

  • Walther H, Lambert JDC, Jones RSG, Heinemann U, Hamon B (1986) Epileptiform activity in combined slices of the hippocampus, the subiculum and the entorhinal cortex during perfusion with low magnesium medium. Neurosci Lett 69: 156–161

    Google Scholar 

  • Ward AA Jr (1969) The epileptic neuron: chronic foci in animals and man. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanisms of epilepsies. Little, Brown & Co, Boston

    Google Scholar 

  • Watkins JC (1984) Excitatory amino acids and central synaptic transmission. Trends Pharmacol Sci 5: 373–375

    Google Scholar 

  • Wauquier A, Ashtom D, Clincke G, Fransen J, Gillardin JM, Janssen PAJ (1985) Anticonvulsant profile of flunarizine. Drug Devel Res 7: 49–60

    Google Scholar 

  • Wong RKS, Prince DA (1978) Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res 159: 385–390

    Google Scholar 

  • Wong RKS, Prince DA, Basbaum AI (1979) Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci 76: 986–990

    Google Scholar 

  • Wong RKS, Prince DA (1981) Afterpotential generation in hippocampal pyramidal cells. J Neurophysiol 45: 86–97

    Google Scholar 

  • Woodbury DM (1980) Convulsant drugs: mechanisms of actions. In: Glaser G, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 249–302

    Google Scholar 

  • Wyler AR, Ward AA jr (1980) Epileptic neurones. In: WindLockard JS, Ward AA jr (eds) Epilepsy, a window to brain mechanisms. Raven Press, New York, pp 51–68

    Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1983) Spontaneous epileptiform activity of CA1 hippocampal neurons in low extracellular calcium solutions. Exp Brain Res 51: 153–156

    Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1986) Nonsynaptic epileptogenesis at the mammalian hippocampus in vitro. II. Role of extracellular potassium. J Neurophysiol 56: 439–450

    CAS  PubMed  Google Scholar 

  • Zuckermann EC, Glaser GH (1968) Hippocampal epileptic activity induced by localized ventricular perfusion with highpotassium cerebrospinal fluid. Exp Neurol 20: 87–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft with grants He 1128/2-3 and 3-2 and by the SFB 220 B3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinemann, U., Hamon, B. Calcium and epileptogenesis. Exp Brain Res 65, 1–10 (1986). https://doi.org/10.1007/BF00243826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243826

Keywords

Navigation