Skip to main content
Log in

Rat ventral mesencephalon grown as organotypic slice cultures and co-cultured with striatum, hippocampus, and cerebellum

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Tissue slices of rat ventral mesencephalon (VM), striatum, hippocampus and cerebellum were prepared from late fetal (E21) to 7 day old (P7) rats and cultured for 3 to 60 days by the roller tube technique before they were stained immunocytochemically for tyrosine hydroxylase (TH), a marker of dopaminergic (DA) neurons and fibres. The TH immunoreactive (TH-i), DA neurons retained their morphological in vivo characteristics in the VM slice cultures consisting of the substantia nigra (SN) and the ventral tegmental area (VTA). The general morphology of the described neuronal cell types did not appear to change when the VM slices were cocultured with striatal tissue, a major normal target of the DA neurons, but an extensive innervation of the striatum by TH-i nerve fibres was observed. In co-cultures of VM and hippocampus, a minor target organ of DA fibres, growth of TH-i nerve fibres was observed mainly into the opposing edge of the hippocampal slice. In co-cultures of VM and cerebellum, which is normally devoid of DA fibres, no significant growth of TH-i nerve fibres into the cerebellar slices was observed. Besides suggesting a target orientated growth of ventral mesencephalic DA fibres, the results point to the further use of VM slice cultures in the study of the developmental, plastic and regenerative properties of DA neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agid Y, Javoy-Agid F, Ruberg M (1987) Biochemistry of neurotransmitters in Parkinson's disease. In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworths, London, pp 166–230

    Google Scholar 

  • Berger B, DiPorzio U, Daguet MC, Gay M, Vigny A, Glowinsk J, Prochiantz A (1982) Long-term development of mesencephalic dopaminergic neurons of mouse embryos in dissociated primary cultures: morphological and histochemical characteristics. Neuroscience 7:193–205

    Google Scholar 

  • Björklund A, Lindvall O (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Dev Brain Res 83:531–537

    Google Scholar 

  • Brundin P, Strecker RE, Widner H, Clarke DJ, Nilsson OG, Astedt B, Lindvall O, Björklund A (1988) Human fetal dopamine neurons grafted in rat model of Parkinson's disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp Brain Res 70:192–208

    Google Scholar 

  • Caeser M, Bonhoeffer T, Bolz J (1989) Cellular organization and development of slice cultures from rat visual cortex. Exp Brain Res 77:234–244

    Google Scholar 

  • Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537–542

    Google Scholar 

  • Coyle JT, Jacobowitz D, Klein D, Axelrod J (1973) Dopaminergic neurons in explants of substantia nigra in culture. J Neurobiol 4:461–470

    Google Scholar 

  • Daguet MC, DiPorzio U, Prochiantz A, Kato A, Glowinski J (1980) Release of dopamine from dissociated mesencephalic dopaminergic neurons in primary cultures in abscence or presence of striatal target cells. Dev Brain Res 191:564–568

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol Scand 62, Suppl 232:1–55

    Google Scholar 

  • Danner H, Pfister C (1982) Sieben Neurontypen in der Substantia Nigra der Ratte. Eine Golgi-rapid-Impregnationsstudie. J Hirnforsch 23:553–566

    Google Scholar 

  • Denis-Donini S, Glowinski J, Prochiantz A (1983) Specific influence of striatal target neurons on the in vitro outgrowth of mesencephalic dopaminergic neurites: a morphological quantitative study. J Neurosci 3:2292–2299

    Google Scholar 

  • Denis-Donini S, Glowinski J, Prochiantz A (1984) Glial heterogenity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature 307:641–643

    Google Scholar 

  • DiPorzio U, Daguet MC, Glowinski J, Prochiantz A (1980) Effect of striatal cells on in vitro maturation of mesencephalic dopaminergic neurones grown in serum-free conditions. Nature 288:370–373

    Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 24:1236–1239

    Google Scholar 

  • Engele J, Pilgrim C, Kirsch M, Reisert I (1989) Different developmental potentials of diencephalic and mesencephalic dopaminergic neurons in vitro. Brain Res 483:98–109

    Google Scholar 

  • Fallon JH, Loughlin SE (1985) Substantia nigra. In: Paxinos G (eds) The rat nervous system. Academic Press, Sydney, pp 353–374

    Google Scholar 

  • Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. J Comp Neurol 180:545–580

    Google Scholar 

  • Fuxe K, Agnati LF, Kalia M, Goldstein M, Andersson K, Haerfstrand A (1985) Dopaminergic systems in the brain and pituitary. In: Fluckiger E, Muller EE, Thorner HO (eds) Basic and clinical aspects of neuroscience. Springer, Berlin Heidelberg, pp 11–25

    Google Scholar 

  • Gerfen CR, Baimbridge KG, Thibault J (1987) The neostriatal mosaic. III. Biochemical and developmental dissociation of path-matrix mesostriatal systems. J Neurosci 7:3935–3944

    Google Scholar 

  • Gulley RL, Wood RL (1971) The fine structure of the neurons in the rat substantia nigra. Tissue Cell 3:675–690

    Google Scholar 

  • Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Meth 4:329–342

    Google Scholar 

  • Gähwiler BH (1988) Organotypic cultures of neural tissue. TINS 11:484–489

    Google Scholar 

  • Hanaway J, McConnell JA, Netsky MG (1971) Histogenesis of the substantia nigra, ventral tegmental area of Tsai and interpeduncular nucleus: an autoradiographic study of the mesencephalon in the rat. J Comp Neurol 142:59–74

    CAS  PubMed  Google Scholar 

  • Hattori T, McGeer PL, McGeer EG (1979) Dendro axonic neurotransmission. II. Morphological sites for the synthesis, binding and release of neurotransmitters in dopaminergic dendrites in the substantia nigra and cholinergic dendrites in the neostriatum. Brain Res 170:71–83

    Google Scholar 

  • Hemmendinger LM, Garber BB, Hoffmann PC, Heller A (1981) Target neuron-specific process formation by embryonic mesencephalic dopamine neurons in vitro. Proc Natl Acad Sci USA 78:1264–1268

    CAS  PubMed  Google Scholar 

  • Hökfelt T, Johansson O, Fuxe K, Goldstein M, Park D (1976) Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes- and diencephalon. Med Biol 54:427–453

    Google Scholar 

  • Hökfelt T, Johansson O, Fuxe K, Goldstein M, Park D (1977) Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. II. Tyrosine hydroxylase in the telencephalon. Med Biol 55:21–40

    Google Scholar 

  • Hökfelt T, Martensson R, Björklund A, Kelinau S, Goldstein M (1984) Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. In: Björklund A, Hökfelt T (eds) Classical transmitters in the CNS. Handbook of chemical neuroanatomy, Vol 2. Elsevier, Amsterdam pp 277–379

    Google Scholar 

  • Jaeger C, Ruiz AG, Llinas R (1989) Organotypic slice cultures of dopaminergic neurons of substantia nigra. Brain Res Bull 22:981–991

    Google Scholar 

  • Juraska JM, Wilson CJ, Groves PM (1977) The substantia nigra of the rat: a Golgi study. J Comp Neurol 172:585–600

    Google Scholar 

  • Knöpfel T, Rietschin L, Gähwiler BH (1989) Organotypic cocultures of rat locus coeruleus and hippocampus. Eur J Neurosci 1:678–689

    Google Scholar 

  • König N, Han V, Lieth E, Lauder J (1987) Effects of co-culture on the morphology of identified raphe and substantia nigra neurons from the embryonic rat brain. J Neurosci Res 17:349–360

    Google Scholar 

  • Lauder JM, Bloom FE (1974) Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. J Comp Neurol 155:469–482

    Google Scholar 

  • Lindvall O (1989) Transplantation into the human brain: present status and future possibilities. J Neurol Neurosurg Psychiat Spec Suppl: 39–54

  • Lindvall O, Björklund A (1983) Dopamine- and norepinephrinecontaining neuron systems: their anatomy in the rat brain. In: Emson PC (eds) Chemical neuroanatomy. Raven Press, New York, pp 229–255

    Google Scholar 

  • Martres M, Bouthenet ML, Sales N, Sokoloff P, Schwartz JC (1985) Widespread distribution of brain dopamine receptors evidenced with 125-I-Iodosulpride, a highly selective ligand. Science 228:752–754

    Google Scholar 

  • Østergaard K, Schou JP, Zimmer J (1990) Tyrosine hydroxylase immunoreactive neurons in organotypic slice cultures of the rat striatum and neocortex. Exp Brain Res (in press)

  • Phillipson OT (1979a) A Golgi study of the ventral tegmental area of Tsai and interfascicular nucleus in the rat. J Comp Neurol 187:99–116

    Google Scholar 

  • Phillipson OT (1979b) The cytoarchitecture of the interfascicular nucleus and ventral tegmental area of Tsai in the rat. J Comp Neurol 187:85–98

    Google Scholar 

  • Pickel VM, Joh TH, Field PM, Becker CG, Reis DJ (1975) Cellular localization of tyrosine hydroxylase by immunohistochemistry. J Histochem Cytochem 23:1–12

    Google Scholar 

  • Preston RJ, McCrea RA, Chang HT, Kitai ST (1981) Anatomy and physiology of substantia nigra and retrorubral neurons studied by extra- and intracellular recording and by peroxidase labeling. Neuroscience 6:331–344

    Google Scholar 

  • Prochiantz A, Daguet MC, Herbet A, Glowinski J (1981) Specific stimulation of in vitro maturation of mesencephalic dopaminergic neurones by striatal membranes. Nature 293:570–572

    Google Scholar 

  • Prochiantz A, DiPorzio U, Kato A, Berger B, Glowinski J (1979) In vitro maturation of mesencephalic dopaminergic neurons from mouse embryos is enhanced in presence of their striatal target cells. Proc Natl Acad Sci USA 76:5387–5391

    CAS  PubMed  Google Scholar 

  • Robertson RT, Zimmer J, Gähwiler BH (1989) Dissection procedure for preparation of slice cultures. In: Shahar A, de-Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. Alan R Liss Inc, New York, pp 1–15

    Google Scholar 

  • Savasta M, Dubois A, Scatton B (1986) Autoradiographic localization of D1 dopamine receptors in the rat brain with sH-SCH-23390. Brain Res 375:291–301

    Google Scholar 

  • Scatton B, Simon H, Le Moal M, Bischoff S (1980) Origin of dopaminergic innervation of the rat hippocampal formation. Neurosci Lett 18:125–131

    Article  CAS  PubMed  Google Scholar 

  • Schlumpf M, Shoemaker WJ, Bloom FE (1977) Expiant cultures of catecholamine-containing neurons from rat brain: biochemical, histofluorescence, and electron microscopic studies. Proc Natl Acad Sci USA 74:4471–4475

    Google Scholar 

  • Specht L, Pickel VM, Joh TH, Reis DJ (1981a) Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. I. Early ontogeny. J Comp Neurol 199:233–253

    Google Scholar 

  • Specht LA, Pickel VM, Joh TH, Reis DJ (1981b) Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny. J Comp Neurol 199:255–276

    Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    Google Scholar 

  • Toso RD, Giorgi O, Soranzo C, Kirschner G, Ferrari G, Favaron M, Benvegnu D, Presti D, Vicini S, Toffano G, Azzone GF, Leon A (1988) Development and survival of neurons in dissociated fetal mesencephalic serum-free cell cultures. I. Effects of cell density and of an adult mammalian striatal-derived neuronotrophic factor (SDNF). J Neurol Sci 8:733–745

    Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493

    Article  CAS  PubMed  Google Scholar 

  • Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    Google Scholar 

  • Whetsell WO, Mytilineou C, Shen J, Yahr MD (1981) The development of the dog nigrostriatal system in organotypic culture. J Neural Transmission 52:149–161

    Google Scholar 

  • Zimmer J, Gähwiler BH (1984) Cellular and connective organization of slice cultures of the rat hippocampus and fascia dentata. J Comp Neurol 228:432–446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Østergaard, K., Schou, J.P. & Zimmer, J. Rat ventral mesencephalon grown as organotypic slice cultures and co-cultured with striatum, hippocampus, and cerebellum. Exp Brain Res 82, 547–565 (1990). https://doi.org/10.1007/BF00228796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228796

Key words

Navigation