Skip to main content
Log in

Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

  1. 1.

    Field and unitary potentials evoked in the vestibulo-cerebellum of frog and cat following vestibular nerve stimulation were recorded with microelectrodes and correlated with their site of origin in the various layers of the cerebellar cortex.

  2. 2.

    In the frog, primary vestibular fibers project both as mossy and as climbing fibers onto the cerebellar auricular lobe. Secondary vestibulo-cerebellar fibers seem to end exclusively as mossy fibers in the auriculum. As a consequence of this dual projection, extra- and intracellular recordings from Purkinje cells in the auricular lobe show two kinds of responses to vestibular nerve stimulation: a) graded, repetitive firing mediated through mossy fiber-granule cell-parallel fiber pathways, and b) all-or-none burst responses caused by monosynaptic impingement of vestibular climbing fibers on Purkinje cells.

  3. 3.

    The field and unitary potentials evoked in the cat nodulus, flocculus and uvula following vestibular nerve stimulation are shown to be generated by mossy fibers exclusively. Considerable convergence of the two labyrinthine mossy fiber inputs to a given cerebellar area was found.

  4. 4.

    Interaction of contralateral and ipsilateral mossy fiber input at the level of the flocculus suggests that Golgi cell inhibition might operate not only as a simple inhibitory feedback loop, but also as a complex gating operator at the granule layer.

  5. 5.

    No short latency climbing fiber activation of Purkinje cells was observed following VIIIth nerve stimulation. Stimulation of the contralateral inferior olive evoked short latency climbing fiber EPSPs in Purkinje cells of the vestibulo-cerebellum. Suggestions are made as to the possible role of mossy and climbing fiber inputs to this area of the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, S., and B.E. Gernandt: Cortical projection of vestibular nerve in cat. Acta otolaryng. (Stockh.), Suppl. 116, 10–18 (1954).

    Google Scholar 

  • Angaut, P., and A. Brodal: The projection of the “vestibulo-cerebellum” onto the vestibular nuclei in the cat. Arch. ital. Biol. 105, 441–479 (1967).

    Google Scholar 

  • Bauer, J., u. R. Leidler: Über den Einfluß der Ausschaltung verschiedener Hirnabschnitte auf die vestibulären Augenreflexe. Arb. neurol. Inst. Univ. Wien 19, 155–226 (1912).

    Google Scholar 

  • Bava, A., S. Sapienza e A. Urbano: Proiezioni discendenti dalla corteccia cerebrale al lobo flocculonodulare del cerveletto di gatto: Ricerche electtrofisiologiche. Arch. Sci. biol. (Bologna) 50, 63–79 (1966).

    Google Scholar 

  • Brodal, A., and P.A. Drabløs: Two types of mossy fibre terminals in the cerebellum and their regional distribution. J. comp. Neurol. 121, 173–187 (1963).

    Google Scholar 

  • —, and B. Hoivik: Site and mode of termination of primary vestibulo-cerebellar fibres in the cat. An experimental study with silver impregnation methods. Arch. ital. Biol. 102, 1–21 (1964).

    Google Scholar 

  • —, u. A. Torvik: Über den Ursprung der sekundären vestibulocerebellaren Fasern bei der Katze. Eine experimentellanatomische Studie. Arch. Psychiat. Z. ges. Neurol. 195, 550–567 (1957).

    Google Scholar 

  • Burlet, H.M. de: Zur vergleichenden Anatomie der Labyrinthinnervation. J. comp. Neurol. 47, 155–169 (1929).

    Google Scholar 

  • Chang, S.T., and P.G. Kostyuk: Discharges of single neurons of the toad's cerebellum evoked by stimulating the vestibular nerve. Fiziol. Zh. (Mosk.) 46, 926–932 (1960).

    Google Scholar 

  • Dow, R. S.: The fibre connections of the posterior parts of the cerebellum in the cat and rat. J. comp. Neurol. 63, 527–548 (1936).

    Google Scholar 

  • — Cerebellar action potentials in response to stimulation of various afferent connections. J. Neurophysiol. 2, 543–555 (1939).

    Google Scholar 

  • Duensing, F., u. K.P. Schaefer: Über die Konvergenz verschiedener labyrinthärer Afferenzen auf einzelne Neurone des Vestibulariskerngebietes. Arch. Psychiat. Nervenkr. 199, 345–371 (1959).

    Google Scholar 

  • Eccles, J.C., R. Llinás and K. Sasaki: Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp. Brain Res. 1, 17–39 (1966a).

    Google Scholar 

  • — The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp. Brain Res. 1, 82–101 (1966b).

    Google Scholar 

  • — The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. (Lond.) 182, 268–296 (1966c).

    Google Scholar 

  • —, K. Sasaki and P. Strata: Interpretation of the potential fields generated in the cerebellar cortex by a mossy fibre volley. Exp. Brain Res. 3, 58–80 (1967a).

    Google Scholar 

  • — A comparison of the inhibitory actions of Golgi cells and basket cells. Exp. Brain Res. 3, 81–94 (1967b).

    Google Scholar 

  • Fernandez, C., and J.M. Fredrickson: Experimental cerebellar lesions and their effect on vestibular function. Acta oto-laryng. (Stockh.), Suppl. 192, 52–62 (1963).

    Google Scholar 

  • Hámori, J., and J. Szentágothai: Participation of Golgi neuron processes in the cerebellar glomeruli: an electron microscope study. Exp. Brain Res. 2, 35–48 (1966).

    Google Scholar 

  • Herrick, C.J.: Origin and evolution of the cerebellum. Arch. Neurol. Psychiat. (Chic.) 11, 621–652 (1924).

    Google Scholar 

  • xxxIto, M.: The mode of integration at the cerebellar subcortical neurones. Proc. Intern. Union of Physiol. Sci., Vol. VII (1968).

  • —, N. Kawai, M. Udo and N. Sato: Cerebellar-evoked disinhibition in dorsal Deiters' neurones. Exp. Brain Res. 6, 247–264 (1968).

    Google Scholar 

  • —, and M. Yoshida: The cerebellar-evoked monosynaptic inhibition of Deiters' neurones. Experientia (Basel) 20, 515–516 (1964).

    Google Scholar 

  • Jansen, J., and A. Brodal: Aspects of Cerebellar Anatomy. Oslo: Johan Grundt Tanum 1954.

    Google Scholar 

  • Larsell, O.: The cerebellum of the frog. J. comp. Neurol. 36, 89–112 (1923).

    Google Scholar 

  • — The development of the cerebellum in the frog (Hyla regilla) in relation to the vestibular and lateral-line system. J. comp. Neurol. 39, 249–289 (1925).

    Google Scholar 

  • Larsell, O.: The comparative morphology of the membranous labyrinth and the lateral-line organs in their relation to the development of the cerebellum. In: The Cerebellum, pp. 279–328. Baltimore: William and Wilkins 1929.

    Google Scholar 

  • — Morphogenesis and evolution of the cerebellum. Arch. Neurol. Psychiat. (Chic.) 31, 373–395 (1934).

    Google Scholar 

  • Llinás, R.: Functional aspects of interneuronal evolution in the cerebellar cortex. In: The Interneurone, UCLA Forum in Medical Sciences No. 11. Ed. by M.A.B. Brazier. Los Angeles: Univ. of Calif. Press 1969. (in press).

    Google Scholar 

  • —, and J. Bloedel: Climbing fibre activation of Purkinje cells in the frog cerebellum. Brain Res. 3, 299–302 (1966/1967).

    Google Scholar 

  • — Frog cerebellum: Absence of long-term inhibition upon Purkinje cells. Science 155, 601–603 (1967).

    Google Scholar 

  • —, D.E. Hillman and W. Precht: Functional aspects of cerebellar evolution. In: The Cerebellum in Health and Disease. Ed. by W.S. Fields and W.D. Willis, Jr., St. Louis: Warren H. Green 1969. (in press).

    Google Scholar 

  • —, and W. Precht: The inhibitory vestibular efferent system and its relation to the cerebellum in the frog. Exp. Brain Res. 8, 16–29 (1969).

    Google Scholar 

  • — and S.T. Kitai: Climbing fibre activation of Purkinje cell following primary vestibular afferent stimulation in the frog. Brain Res. 6, 371–375 (1967a).

    Google Scholar 

  • — Cerebellar Purkinje cell projection to the peripheral vestibular organ in the frog. Science 158, 1328–1330 (1967b).

    Google Scholar 

  • Matthews, P.B.C., C.G. Phillips and G. Rushworth: Afferent systems converging upon cerebellar Purkinje cells in frog. Quart. J. exp. Physiol. 43, 38–52 (1958).

    Google Scholar 

  • Peterson, B.W.: Effect of tilting on the activity of neurons in the vestibular nuclei of the cat. Brain Res. 6, 606–609 (1967).

    Google Scholar 

  • Pompeiano, O., and A. Brodal: Spino-vestibular fibres in the cat. An experimental study. J. comp. Neurol. 108, 353–382 (1967).

    Google Scholar 

  • xxxPrecht, W., and R. xxxLlinás: Direct vestibular afferents to cat cerebellar nuclei. Proc. Intern. Union of Physiol. Sci., Vol. VII, Abst. 1063, p. 355 (1968).

  • —, and H. Shimazu: Functional connections of tonic and kinetic vestibular neurons with primary vestibular afferents. J. Neurophysiol. 28, 1014–1028 (1965).

    Google Scholar 

  • Ramóny Cajal, S.: La Textura del Sistema Nervioso del Hombre y los Vertebrados. Madrid: Moya 1904.

    Google Scholar 

  • Sasaki, K., and P. Strata: Responses evoked in the cerebellar cortex by stimulating mossy fibre pathways to the cerebellum. Exp. Brain Res. 3, 95–110 (1967).

    Google Scholar 

  • Shimazu, H.: Mutual interactions between bilateral vestibular nuclei and their significance in motor regulation. In: Neurophysiological Basis of Normal and Abnormal Motor Activities. Ed. by M.D. Yahr and D.P. Purpura. Hewlett, N.Y.: Raven Press 1968.

    Google Scholar 

  • —, and W. Precht: Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J. Neurophysiol. 28, 991–1013 (1965).

    Google Scholar 

  • Snider, R.S.: Alterations which occur in mossy terminals of the cerebellum following transection of the brachium pontis. J. comp. Neurol. 65, 417–435 (1936).

    Google Scholar 

  • Stein, B.M., and M.B. Carpenter: Central projections of portions of the vestibular ganglia innervating specific parts of the labyrinth in rhesus monkey. Amer. J. Anat. 120, 281–318 (1967).

    Google Scholar 

  • Szentágothai, J., u. K. Rajkovits: Über den Ursprung der Kletterfasern des Kleinhirns. Z. Anat. Entwickl.-Gesch. 121, 130–141 (1959).

    Google Scholar 

  • Trinker, D.: Kennlinien der Receptoren und primären Neurone des nichtakustischen Säuger Labyrinthes. Pflügers Arch. ges. Physiol. 281, 87 (1964).

    Google Scholar 

  • Walberg, F.: Descending connections to the inferior olive. An experimental study in the cat. J. comp. Neurol. 104, 77–173 (1956).

    Google Scholar 

  • Wall, P.D.: The origin of a spinal-cord slow potential. J. Physiol. (Lond.) 164, 508–526 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Precht, W., Llinás, R. Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat. Exp Brain Res 9, 30–52 (1969). https://doi.org/10.1007/BF00235450

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235450

Key words

Navigation