Skip to main content
Log in

Pyramidal control of fusimotor neurons supplying extensor muscles in the cat's forelimb

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The effects of cortical stimulation upon dynamic and static sensitivities of the sensory endings in muscle spindles have been analyzed. 63 single afferent fibers from the muscle spindles of the forelimb extensors: M. flexor carpi radialis, M. flexor digitorum communis and M. palmaris longus were isolated in dorsal root filaments in 20 adult cats under chloralose-urethane anesthesia. They were identified by their response to stimulation of the median nerve.

  1. 1.

    Surface anodal repetitive stimulation of the anterior sigmoid gyrus was found to produce an enhancement of static response of single Group II fibers. Effective area was localized in a restricted region which corresponded to the forelimb motor area. The effect was obtained without any concomitant muscle contraction. Similarly, the stimulation increased the resting discharges of the Group Ia fibers from the same muscles.

  2. 2.

    Stimulation of the same area in the cerebral cortex was also found to increase the dynamic sensitivities of primary sensory endings. The increase was revealed by an enhancement of initial burst discharge during relaxation period of a twitch contraction caused by median nerve stimulation.

  3. 3.

    These results indicate that stimulation of the forelimb motor area has a facilitatory effect on both the static and dynamic fusimotor neurons innervating the muscle spindles of the test muscles.

  4. 4.

    The effects were reproduced in pyramidal tract preparations in which the brainstem was cut either at the level of the midbrain except for the cerebral peduncle or at the level of caudal medulla oblongata sparing the pyramid.

  5. 5.

    The threshold for the fusimotor effects was less than 1.3–1.5 times threshold of the pyramidal tract discharge, when the best spot for eliciting the fusimotor response was chosen. These results indicate that the effects of cortical stimulation are mainly mediated by the fast conducting pyramidal tract fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appelberg, B.: The effect of electrical stimulation of nucleus ruber on the response to stretch in primary and secondary muscle spindle afferents. Acta physiol. scand. 56, 140–151 (1962).

    Google Scholar 

  • —, P. Bessou and Y. Laporte: Action of static and dynamic fusimotor fibres on secondary endings of cat's spindle. J. Physiol. (Lond.) 185, 160–171 (1966).

    Google Scholar 

  • —, and E. Emonet-Denand: Central control of static and dynamic sensitivities of muscle spindle primary endings. Acta physiol. scand. 63, 487–494 (1965).

    Google Scholar 

  • —, and T. Jeneskog: Extension and twitch of muscle as test of muscle spindle static and dynamic sensitivities. Life Sciences 7, 1277–1282 (1968).

    Google Scholar 

  • —, and G. Molander: A rubro-olivary pathway. I. Identification of a descending system for control of the dynamic sensitivity of muscle spindles. Exp. Brain Res. 3, 372–381 (1967).

    Google Scholar 

  • Bernhard, C.G., and E. Bohm: Cortical representation and functional significance of the corticomotoneuronal system. Arch. Neurol. Psychiat. (Chic.) 72, 473–502 (1954).

    Google Scholar 

  • — and I. Petersén: Investigations on the organization of the corticospinal system in monkeys. Acta physiol. scand. 29, Suppl. 106, 79–105 (1953).

    Google Scholar 

  • Brodal, P.: The corticopontine projection in the cat. I. Demonstration of a somatotopically organized projection from the primary sensorimotor cortex. Exp. Brain Res. 5, 210–234 (1968).

    Google Scholar 

  • Chambers, W.W., and C.N. Liu: Corticospinal tract of the cat. An attempt to correlate the pattern of degeneration with deficits in reflex activity following neocortical lesions. J. comp. Neurol. 108, 23–53 (1957).

    Google Scholar 

  • Clough, J.F.M., D. Kernell and C.G. Phillips: The distribution of mono-synaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurones of the baboon's hand and forearm. J. Physiol. (Lond.) 198, 145–166 (1968).

    Google Scholar 

  • Crowe, A., and P.B.C. Matthews: The effects of stimulation of static and dynamic fusimotor fibres on the response to stretching of the primary endings of muscle spindles. J. Physiol. (Lond.) 174, 109–131 (1964).

    Google Scholar 

  • Eccles, J.C., R.M. Eccles, A. Iggo and A. Lundberg: Electrophysiological studies on gamma motoneurones. Acta physiol. scand. 50, 32–40 (1960).

    Google Scholar 

  • Eldred, E., R. Granit and P.A. Merton: Supraspinal control of the muscle spindles and its significance. J. Physiol. (Lond.) 122, 498–523 (1953).

    Google Scholar 

  • Fulton, J.F., and J. Pi-Sũner: A note concerning the probable function of various afferent end-organs in skeletal muscle. Amer. J. Physiol. 83, 554–562 (1928).

    Google Scholar 

  • Granit, R.: Receptors and Sensory Perception. New Haven and London: Yale University Press 1955.

    Google Scholar 

  • —, J.O. Kellerth and A.J. Szumski: Intracellular recording from extensor motoneurons activated across the gamma loop. J. Neurophysiol. 29, 530–544 (1966).

    Google Scholar 

  • Hassler, R., u. K. Muhs-Clement: Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze. J. Hirnforsch. 6, 377–420 (1964).

    Google Scholar 

  • Hongo, T., and E. Jankowska: Effects from the sensorimotor cortex on the spinal cord in cats with transected pyramids. Exp. Brain Res. 3, 117–134 (1967).

    Google Scholar 

  • Hunt, C.C.: The reflex activity of mammalian small-nerve fibres. J. Physiol. (Lond.) 115, 456–469 (1951).

    Google Scholar 

  • —: Relation of function to diameter in afferent fibers of muscle nerves. J. gen. Physiol. 38, 117–131 (1954).

    Google Scholar 

  • Jansen, J.K.S., and P.B.C. Matthews: The central control of the dynamic response of muscle spindle receptors. J. Physiol. (Lond.) 161, 357–378 (1962).

    Google Scholar 

  • Koeze, T.H., C.G. Phillips and J.S. Sheridan: Thresholds of cortical activation of muscle spindles and a motoneurones of the baboon's hand. J. Physiol. (Lond.) 195, 419–449 (1968).

    Google Scholar 

  • Kuypers, H.G.J.M.: An anatomical analysis of cortico-bulbar connexions to the pons and lower brainstem in the cat. J. Anat. (Lond.) 92, 198–218 (1958).

    Google Scholar 

  • —: The descending pathways to the spinal cord, their anatomy and function. Progr. Brain Res. 11, 178–202 (1964).

    Google Scholar 

  • Landgren, S., C.G. Phillips and R. Porter: Minimal synaptic action of pyramidal impulses on some α motoneurons of the baboon's hand and forearm. J. Physiol. (Lond.) 161, 91–111 (1962a).

    Google Scholar 

  • —, and H. Silfvenius: Cortical projection of group Ia muscle afferents from the hindlimb. Proc. Internat. Union Physiol. Sci. 7, 253 (1968).

    Google Scholar 

  • Laursen, A.M., and M. Wiesendanger: Pyramidal effect on alpha and gamma motoneurons. Acta physiol. scand. 67, 165–172 (1966).

    Google Scholar 

  • Lawrence, D.G., and H.G.J.M. Kuypers: The functional organization of the motor system in the monkey. Brain 91, 1–14 (1968).

    Google Scholar 

  • Leksell, L.: The action potential and excitatory effects of the small ventral root fibres to skeletal muscle. Acta physiol. scand, 10, Suppl. 31, 1–84 (1945).

    Google Scholar 

  • Livingston, A., and C.G. Phillips: Maps and thresholds for the sensorimotor cortex of the cat. Quart. J. exp. Physiol. 42, 190–205 (1957).

    Google Scholar 

  • Lundberg, A., and P. Voorhoeve: Effects from the pyramidal tract on spinal reflex arcs. Acta physiol. scand. 56, 201–219 (1962).

    Google Scholar 

  • MacLean, P.D., T. Yokota and M.A. Kinnard: Photically sustained “on” responses of units in posterior hippocampal gyrus of awake monkey. J. Neurophysiol. 31, 870–883 (1968).

    Google Scholar 

  • Matthews, B.H.C.: Nerve endings in mammalian muscle. J. Physiol. (Lond.) 78, 1–53 (1933).

    Google Scholar 

  • —: Muscle spindles and their motor control. Physiol. Rev. 44, 219–288 (1964).

    Google Scholar 

  • Merton, P.A.: Speculations on the servo-control of movement. In: The Spinal Cord, pp. 247–255. Ed. by G.E.W. Wolstenholme. London: Churchill 1953.

    Google Scholar 

  • Nyberg-Hansen, R.: Anatomical demonstration of gamma motoneurons in the cat's spinal cord. Exp. Neurol. 13, 11–81 (1965).

    Google Scholar 

  • — and A. Brodal: Sites of termination of corticospinal fibers in the cat. An experimental study with silver impregnation methods. J. comp. Neurol. 120, 369–392 (1963).

    Google Scholar 

  • Oscarsson, O., and I. Rosén: Projection to cerebral cortex of large muscle spindle afferents in forelimb nerves of the cat. J. Physiol. (Lond.) 169, 924–945 (1963).

    Google Scholar 

  • Phillips, C.G., and R. Porter: The pyramidal projection to motoneurones of some muscle groups of the Baboon's forelimb. Progr. Brain Res. 12, 222–245 (1964).

    Google Scholar 

  • Preston, J.B., and D.G. Whitlock: Intracellular potentials recorded from motoneurons following precentral gyrus stimulation in primate. J. Neurophysiol. 24, 91–100 (1961).

    Google Scholar 

  • Sherrington, C.S.: On reciprocal innervation of antagonistic muscles — eighth note. Proc. roy. Soc. B 76, 269–297 (1905).

    Google Scholar 

  • Takahashi, K.: Slow and fast groups of pyramidal tract cells and their respective membrane properties. J. Neurophysiol. 28, 908–923 (1965).

    Google Scholar 

  • Towe, A.L., H.D. Patton and T.T. Kennedy: Properties of the pyramidal system in the cat. Exp. Neurol. 8, 220–238 (1963).

    Google Scholar 

  • Tower, S. S.: The threshold for electrical excitation of the motor cortex of anaesthetized mammals. Johns Hopk. Hosp. Bull. 43, 237–256 (1928).

    Google Scholar 

  • —: The dissociation of cortical excitation from cortical inhibition by pyramid section and the syndrome of that lesion in the cat. Brain 58, 238–255 (1935).

    Google Scholar 

  • Uemura, K., and J.B. Preston: Comparison of motor cortex influences upon various hindlimb motoneurons in pyramidal cats and primates. J. Neurophysiol. 28, 398–412 (1965).

    Google Scholar 

  • Vedel, P.: Etude de contrôle nerveux central des modalités statique et dynamique de la réponse des recepteurs primaires du fuseau neuromusculaire chez le Chat. Effets d'une stimulation du noyau caudé et de la capsule interne. C.R. Soc. Biol. (Paris) 159, 441–446 (1965).

    Google Scholar 

  • —: Mise en évidence d'un contrôle corticale de l'activité des fibres fusimotorices dynamiques chez le chat par la voie pyramidale. C.R. Acad. Sci. (Paris) 262, 908–911 (1966).

    Google Scholar 

  • Voorhoeve, P.E.: Autochthonous activity of fusimotor neurones in the cat. Acta physiol. pharmacol. neerl. 9, 1–42 (1960).

    Google Scholar 

  • —, and R.W. van Kanten: Reflex behavior of fusimotor neurones of the cat upon electrical stimulation of various afferent fibres. Acta physiol. pharmacol. neerl. 10, 391–407 (1962).

    Google Scholar 

  • Yokota, T.: Pyramidal control of fusimotor neurons in cat. Thesis, Amsterdam: De Blauwbrug 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokota, T., Voorhoeve, P.E. Pyramidal control of fusimotor neurons supplying extensor muscles in the cat's forelimb. Exp Brain Res 9, 96–115 (1969). https://doi.org/10.1007/BF00238324

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238324

Key Words

Navigation