Skip to main content
Log in

Laminar sorption and swelling theory for wood and cellulose

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

The known requirements for the sorption and swelling of wood are reviewed. These are shown to be compatible, in the case of softwoods, with the following simplified model. The fibers are continuous with either rectangular or circular cross sections and lumen of the same shape with a constant size. The fiber walls consist of concentric lamina made up of small repeating units 100 Å by 100 Å, consisting of a microcrystalline core surrounded by an amorphous sheath. All sorption and swelling occurs at the surfaces of or within the amorphous sheath. The major portion of the sorption and swelling is inter-laminar with just sufficient intra-laminar sorption and swelling to avoid laminar distortion. Calculations give the generally accepted internal sorption surface for water of about 200 square meters per gram. The portion of the total sorption that is intra-laminar varies from 5 ... 20 percent in going from wood with a specific gravity of 0.3 ... 1.0. Thickness of sorption in water molecules per sorption site vary from 6.1 ... 4.9 for inter-laminar sorption and 0.35 ... 1.35 for intra-laminar sorption in going from wood with a specific gravity of 0.3 to one of 1.0. Similar values are obtained from experimental swelling data where lumen cross sections change. Similar calculations for super swelling of wood and pulps show that laminar separations may become sufficiently great to be microscopically visible. The calculations show that bound water fiber saturation points for wood normally fall in the range of 25 ... 40 percent. Super swollen wood, chemically isolated fibers and beaten fibers may as a result of reduced restraints have fiber saturation points greater than 150 percent. The latter are attributed to dispersion or diffusion forces rather than the conventional bound water forces of hydrogen bonding for intact wood.

Zusammenfassung

Die bekannten Bedingungen für die Sorption und Quellung von Holz werden erörtert. Sie sind auf Nadelholz unter Anwendung des folgenden, vereinfachten Modells anwendbar. Die Fasern sind durchgehend und haben rechteckigen oder kreisförmigen Querschnitt, mit Zellhohlräumen gleicher Form und konstanter Größe. Die Faserwände bestehen aus konzentrisch angeordneten Schichten, die wiederum aus kleinen, sich wiederholenden 100 Å×100 Å großen Einheiten zusammengesetzt sind; diese wiederum bestehen aus einem mikrokristallinen Kern, umgeben von einer amorphen Auflagerung. Alle Sorptions- und Quellungsvorgänge finden an der Oberfläche oder innerhalb dieser amorphen Auflagerung statt; sie spielen sich in der Hauptsache in der Schicht selbst ab (inter-laminar), jedoch findet genügend Zwischenschicht-Sorption und-Quellung (intra-laminar) statt, um Verformungen der Schichten zu vermeiden. Durch Berechnung erhält man die allgemein anerkannte Größe der inneren Sorptionsfläche für Wasser von etwa 200 m2/g. Der Anteil der intra-laminaren Sorption an der Gesamtsorption schwankt zwischen 5 und 20% bei Holz mit Rohdichten von 0.3 bis 1.0. Die Schichtdicke der sorbierten Wassermoleküle je Sorptionsstelle liegt für inter-laminare Sorption zwischen 6.1 und 4.9, und für intra-laminare Sorption zwischen 0.35 und 1.35 bei Holz mit Rohdichten zwischen 0.3 bis 1.0. Ähnliche Werte ergaben sich aus experimentell ermittelten Quellungsdaten bei Zellhohlräumen mit sich änderndem Querschnitt. Vergleichbare Berechnungen der Super-Quellung des Holzes und des Zellstoffes zeigen, daß laminare Abtrennungen so groß werden können, daß sie mikroskopisch sichtbar werden. Sie zeigen ferner, daß die Fasersättigungspunkte bei gebundenem Wasser meist zwischen 25 und 40% liegen. Extrem gequollenes Holz, chemisch herausgelöste und gemahlene Fasern können aufgrund verringerter Behinderung Fasersättigungspunkte über 150% erreichen. Diese letztere Erscheinung ist eher den Dispersions- oder Diffusionskräften zuzuschreiben als den Kräften aus Wasserstoffbrücken des gebundenen Wassers im intakten Holz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggebrandt, L. G., and O. Samuelson: Penetration of Water-Soluble Polymers into Cellulose Fibers. J. Applied Polymer Sci. 8 (1964) 2801.

    Google Scholar 

  2. Babbitt, J. D.: On the Absorption of Water Vapor by Cellulose. Canadian J. Research 20A (1942) 143.

    Google Scholar 

  3. Bailey, I. W.: Cell Wall Structure of Higher Plants. Ind. Eng. Chem. 30 (1938) 43.

    Google Scholar 

  4. Barkas, W. W., and R. Hallan: A Measurement of the Forces of Liquid Retention by Wet Paper Making Fibers. Proc. Tech. Sect. British Pulp and Paper Manufacturers Assoc. 34 (1953) 289.

    Google Scholar 

  5. Boutelje, J. B.: The Relationship of the Structure to Transverse Anisotropy in Wood with Reference to Shrinkage and Elasticity. Holzforsch. 16 (1962) No. 2, 33.

    Google Scholar 

  6. —: On Shrinkage and Change in Microscopic Void Volume During Drying as Calculated from Measurements on Microtome Cross Sections of Swedish Pine. Svensk. Papperstidn. 65 (1962) No. 6, 209.

    Google Scholar 

  7. Brunauer, S.: Adsorption of Gases and Vapors, Princetown Univ. Press 1 (1943).

  8. —, P. H. Emmett, and E. Teller: Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60 (1938) 309.

    Google Scholar 

  9. Feist, W. C., and H. Tarkow: A New Procedure for Measuring Fiber Saturation Points. For. Prod. J. 17 (1967) 65.

    Google Scholar 

  10. Frey-Wyssling, A.: Die Pflanzliche Zellwand. Berlin/Göttingen/Heidelberg 1959: Springer.

    Google Scholar 

  11. Haselton, W. R.: Gas Adsorption by Wood, Pulp and Paper. Tappi 37 (1954) No. 9, 404.

    Google Scholar 

  12. Kelsey, K. E., and L. N. Clarke: The Heat of Sorption of Water by Wood. Australian J. Applied Sci. 7 (1956) 160.

    Google Scholar 

  13. Kollmann, F. F. P., and W. A. Côté: Principles of Wood Science and Technology, Vol. I: Solid Wood. Berlin/Heidelberg/New York 1968: Springer.

    Google Scholar 

  14. Loughborough, D. L., and A. J. Stamm: Molecular Properties of Lignin Solutions. J. Phys. Chem. 40 (1936) 1113.

    Google Scholar 

  15. McIntosh, D. C.: The Effect of Refining on the Structure of Fiber Wall. Tappi 50 (1967) No. 10, 482.

    Google Scholar 

  16. Merchant, M. V.: A Study of Water-Swollen Cellulose Fibers which have been Liquid-Exchanged and Dried from Hydrocarbons. Tappi 40 (1957) No. 9, 771.

    Google Scholar 

  17. Page, D. H., and J. H. deGrâce: The Delamination of the Fiber Walls by Beating and Refining. Tappi 50 (1967) No. 10, 489.

    Google Scholar 

  18. Ritter, G. J.: Composition and Structure of the Cell Walls of Wood. Ind. Eng. Chem. 20 (1928) 941.

    Google Scholar 

  19. Robertson, A. A.: Investigation of Cellulose-Water Relationship by the Pressure Plate Method. Tappi 48 (1965) No. 10, 568.

    Google Scholar 

  20. Spalt, H. A.: The Sorption of Water Vapor by Domestic and Tropical Woods. For. Prod. J. 7 (1957) No. 10, 331.

    Google Scholar 

  21. —: Fundamentals of Water Vapor Sorption by Wood. For. Prod. J. 8 (1958) No. 10, 288.

    Google Scholar 

  22. Stamm, A. J.: Method of Estimating Vapor Sorption at Fiber Saturation Point of Wood and Paper. Holz Roh-Werkstoff 17 (1959) No. 5, 203–205.

    Google Scholar 

  23. —: Wood and Cellulose Science. Chapter 2, 3, 5, 8, 9, 11, 12, 13, New York 1964: Ronald Press Co.

    Google Scholar 

  24. —: Penetration of the Cell Walls of Water-Saturated Wood and Cellophane by Polyethylene Glycols. Tappi 51 (1968) No. 1, 62.

    Google Scholar 

  25. —, S. W. Clary, and W. J. Elliott: Effective Radii of Lumen and Pit Pores in Softwoods. Wood Science 1 (1968) No. 2, 93.

    Google Scholar 

  26. —, and W. K. Loughborough: Thermodynamics of the Swelling of Wood. J. Phys. Chem. 39 (1943) 121.

    Google Scholar 

  27. —, and H. T. Saunders: Specific Gravity of Wood Substance of Loblolly Pine as Affected by Chemical Composition. Tappi 49 (1966) No. 9, 397.

    Google Scholar 

  28. Stone, J. E., and A. M. Scallan: A Study of Cell Wall Structure by Nitrogen Absorption. Pulp and Paper Mag. Canada 66 (1965) 407.

    Google Scholar 

  29. —, A. M. Scallan, and G. M. A. Aberson: Density of Native Cellulose Fibers. Pulp and Paper Mag. Canada 67 (1966) No. 5, 263.

    Google Scholar 

  30. —: Effect of Component Removal upon the Porous Structure of the Cell Wall of Wood: II. Swelling in Water and the Fiber Saturation Point. Tappi 50 (1967) No. 10, 496.

    Google Scholar 

  31. Tarkow, H., W. C. Feist, and C. F. Southerland: Interaction of Wood and Polymer Materials: Penetration Versus Molecular Size. For. Prod. J. 16 (1966) No. 10, 61.

    Google Scholar 

  32. —: The Superswollen State of Wood. Tappi 51 (1968) H. 2, 80.

    Google Scholar 

  33. Tiemann, H. D.: Effect of Moisture upon the Strength and Stiffness of Wood. US Dept. Agr. Forest Service Bull. No. 70 (1906).

  34. Urquhart, A. R., and N. Eckersall: The Moisture Relations of Cotton: VII. A Study of Hysteresis. J. Text. Int. 21 (1930) T499.

  35. Urquhart, A. R., and N. Eckersall: The Absorption of Water by Rayon. J. Text. Ind. 23 (1932) T163.

    Google Scholar 

  36. Vorreiter, V. L.: Fiber Saturation Moisture and Maximum Water adsorption of Wood. Holzforsch. 17 (1963) No. 5, 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper No. 2743 of the Journal Series of the N. C. State University Agricultural Experiment Station, Raleigh, North Carolina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamm, A.J., Smith, W.E. Laminar sorption and swelling theory for wood and cellulose. Wood Science and Technology 3, 301–323 (1969). https://doi.org/10.1007/BF00352304

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352304

Keywords

Navigation