Skip to main content
Log in

Vertical fluxes and ecological significance of organic materials during the phytoplankton bloom during austral summer in Breid Bay, Antarctica

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A mooring system consisting of an in situ fluorometer at a depth of 50 m and a time-series sediment trap at a depth of 110 m was deployed at the sediment trap site (70°11.536'S; 24°18.679'E; water depth: 300 m) in Breid Bay, Antarctica in austral summer from 28 December 1985 to 13 February 1986. Sinking particles, consisting of diatoms (mainly Thalassiosira antarctica), were analyzed for organic materials, stable carbon and nitrogen isotopes. Vertical fluxes of organic carbon and nitrogen were determined to be within the ranges of 12.3 to 116 mg C m-2 d-1 and 1.79 to 15.4 mg N m-2 d-1, respectively, with maxima in the middle of January 1986, after which time the organic carbon and nitrogen fluxes tended to decrease with a steep gradient. High values of δ13C were found in the organic matter of the sinking particles collected before the middle of January, indicating that the organic matter was derived from the diatoms in the logarithmic phase of their growth. Increased abundance of glucose was found in the water-extractable carbohydrate, which was one of the sinking particles collected in the middle of January. This fact clearly indicated that the diatoms were no longer in the growth phase but rather in the stationary phase, because reserved glucan as well as various cellular organic materials were reportedly accumulated within the algal cells in the stationary phase. Fifteen species of protein amino acids with trace amounts of β-alanine, γ-aminobutyric acid and ornithine were found in the sinking particles upon acid hydrolysis, but the amino acid composition of these samples had not been affected much by biological agents. The essential amino acid index was calculated for the sinking particles collected in the course of the sediment trap experiment. The indices obtained indicated that the sinking particles collected in Breid Bay were more ecologically significant than the sinking and suspended particles from deep waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Arai, M. N., Food, J. A., Whyte N. C. (1989). Biochemical composition of fed and starved Aequorea victoria (Murbach et Shearer, 1902) (Hydromedusa). J. exp. mar. Biol. Ecol. 127: 289–299

    Article  CAS  Google Scholar 

  • Athida, A. (1980). Introduction the nutrition chemistry. Yokendo, Tokyo.

    Google Scholar 

  • Bodungen, B. v. (1986) Phytoplankton growth and krill grazing during spring in the Bransfield Strait, Antarctica-Implications from sediment trap studies. Polar Biol. 6: 153–160

    Article  Google Scholar 

  • Cifuentes, L. A., Sharp, J. H., Fogel, M. L. (1988). Stable carbon and nitrogen isotopes biogeochemistry in the Delaware estuary. Limnol. Oceanogr. 33: 1102–1115

    Article  CAS  Google Scholar 

  • Cobler, R., Dymond, J. (1980). Sediment trap experiment in the Galapagos Spreading Center, equatorial Pacific. Science, N.Y. 207: 801–803

    Article  Google Scholar 

  • Craig, H. (1957). Isotope standards for carbon and oxygen and correction factors of mass-spectrometric analysis of carbon dioxide. Geochim. cosmochim. Acta 12: 133–149

    Article  CAS  Google Scholar 

  • DeBaar, H. J., Farrington, J. W., Wakeham, S. G. (1983). Vertical flux of fatty acids in the North Atlantic Ocean. J. mar. Res. 41: 19–41

    Article  CAS  Google Scholar 

  • Degens, E. T., Guillard, R. R. L., Sackett, W. M., Hellebust, J. A. (1968). Metabolic fractionation of carbon isotopes in marine plankton, I. Temperature and respiration experiments. Deep-Sea Res. 15: 1–9

    CAS  Google Scholar 

  • Dunbar, R. B. (1984). Sediment trap experiments on the Antarctic continental margin. Antarctic J. U.S. 19: 70–81

    Google Scholar 

  • El-Sayed, S. Z. (1990). Plankton. In: Glasby, P. G. (ed.) Antarctic sector of the Pacific. Elsevier, New York, p. 207–241

    Google Scholar 

  • El-Sayed, S. Z., Biggs, D. C., Holm-Hansen, O. (1983). Phytoplankton standing crop, primary productivity, and near-surface nitrogen nutrient fields in the Ross Sea, Antarctica. Deep-Sea Res. 30: 871–886

    Article  Google Scholar 

  • Fukuchi, M., Hattori, H., Sasaki, H., Hoshiai, T. (1988). A phytoplankton bloom and associated processes observed with a longterm moored system in Antarctic waters. Mar. Ecol. Prog. Ser. 45: 279–288

    Article  Google Scholar 

  • Fukuchi, M., Sasaki, H. (1981). Phytoplankton and zooplankton standing stocks and downward flux of particulate material around fast ice edge of Lutzow-Holm Bay, Antarctica. Mem. natn Inst. polar Res., Tokyo 34: 13–36

    Google Scholar 

  • Fukuchi, M., Tanimura, A., Ohtsuka, H. (1984). Seasonal change of chlorophyll a under fast ice in Lutzow-Holm Bay, Antarctica. Mem. natn Inst. polar Res., Tokyo Spec. Issue 32: 51–59

    Google Scholar 

  • Fukuchi, M., Tanimura, A., Ohtsuka, H., Hoshiai, T. (1985). Report on the BIOMASS-oriented research at Syowa Station in 1982. Antarctic Rec., natn Inst. polar Res. Japan 85:102–117

    Google Scholar 

  • Gersonde, R., Wefer, G. (1987). Sedimentation of biogenic siliceous particles in Antarctic waters (Antarctic section). Mar. Micropaleont. 11: 311–332

    Article  Google Scholar 

  • Handa, N. (1969). Carbohydrate metabolism in the marine diatom Skeletonema costatum. Mar. Biol. 4: 208–214

    Article  CAS  Google Scholar 

  • Handa, N., Yanagi, K. (1969) Studies on water extractable carbohydrates of the particulate matter from the northwest Pacific Ocean. Mar. Biol. 4: 197–210

    Article  CAS  Google Scholar 

  • Haug, A., Myklestad, S. (1976) Polysaccharides of marine diatoms with special reference to Chaetoceros species. Mar. Biol. 34: 217–222

    Article  CAS  Google Scholar 

  • Hecky, R. E., Mopper, K., Kilham, P., Degens, E. T. (1973). The amino acid and sugar composition of diatom cell-wall. Mar. Biol. 19: 323–331

    Article  CAS  Google Scholar 

  • Hinga, K. R., Sieburth, J. McN., Heath, G. R. (1979). The supply and use of organic material at the deep-see floor. J. mar. Res. 37: 557–579

    CAS  Google Scholar 

  • Honjo, S. (1980). Material fluxes and sedimentation in the mesopelagic and bathypelagic zones. J. mar. Res. 38: 53–97

    CAS  Google Scholar 

  • Honjo, S., Manganini, S., Cole, J. (1982). Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res. 29: 609–625

    Article  CAS  Google Scholar 

  • Inoue, H., Sugimura, Y. (1985). pCO2 and δ13X values in surface seawaters and atmosphere in southern oceans. Abstract in the Seventh Symposium on Polar Biology. Natn Inst. polar Res., Tokyo, p. 2

    Google Scholar 

  • Ittekkot, V., Degens, E. T., Honjo, S. (1984a). Seasonality in the fluxes of sugars, amino acids and amino sugars to the deep ocean: Panama Basin. Deep-Sea Res. 31: 1071–1083

    Article  CAS  Google Scholar 

  • Ittekkot, V., Deuser, W. G., Degens, E. T. (1984b). Seasonality in the fluxes of sugars, amino acids and amino sugars to the deep ocean: Sargasso Sea. Deep-Sea Res. 31: 1057–1069

    Article  CAS  Google Scholar 

  • Lee, C., Cronin, C. (1982). The vertical flux of particulate organic nitrogen in the sea: decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic. J. mar. Res. 40: 227–251

    CAS  Google Scholar 

  • Lee, C., Cronin, C. (1984). Particulate amino acids in the sea: effects of primary productivity and biological decomposition. J. mar. Res. 42: 1075–1097

    Article  CAS  Google Scholar 

  • Lee, C., Wakeham, S., Farrington, J. W. (1983). Variation in the composition of particulate organic matter in a time series sediment trap. Mar. Chem. 13: 181–194

    Article  CAS  Google Scholar 

  • Liebezeit, G. (1987). Early diagenesis of carbohydrates in the marine environment. I. Sediment trap experiments. In: Degens, E., Izdale, E., Honja, S. (eds.). Particulate flux in the ocean. Im Selbstverlag des Geologisch-Palaontrogischen Institutes der Universität Hamburg, Hamburg, p. 279–299

    Google Scholar 

  • Menzel, D. W., Vaccaro, R. F. (1964). The measurement of dissolved organic and particulate carbon in seawater. Limnol. Oceanogr. 9: 138–142

    Article  Google Scholar 

  • Minagawa, M., Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and arimal age. Geochim. cosmochim. Acta. 48: 1135–1140

    Article  CAS  Google Scholar 

  • Myklestad, S., Hang, A., Larsen, B. (1972). Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran)Hudstedt. II. Preliminary investigation of the extracellular polysaccharide. J. exp. mar. Biol. Ecol. 9: 137–144

    Article  CAS  Google Scholar 

  • O'Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochem. 20: 553–567

    Article  Google Scholar 

  • Repata, D. J., Gagosian, R. B. (1983). Carotenoid transformation products in the upwelling waters off the Peruvian coast: suspended particulate matter, sediment trap material, and zooplankton fecal pellet analyses. In: Bjoroy, M. (ed.) Advances in organic geochemistry, 1981. John Wiley & Sons, New York, p. 380–388

    Google Scholar 

  • Sackett, W. M., Eckelmann, W. R., Bender, M. L., Be, A. W. H. (1965). Temperature dependence of carbon isotope composition in marine plankton and sediments. Science, N.Y. 148: 235–237

    Article  CAS  Google Scholar 

  • Saino, T., Hattori, A. (1980). 15N natural abundance in oceanic suspended particulate matter. Nature, Lond. 283: 752–754

    Article  CAS  Google Scholar 

  • Sakugawa, H., Handa, N. (1985a). Isolation and characterization of dissolved and particulate polysaccharides in Mikawa Bay. Geochim. cosmochim. Acta 49: 1185–1193

    Article  CAS  Google Scholar 

  • Sakugawa, H., Handa, N. (1985b). Chemical studies on dissolved carbohydrates in the water samples collected from the North Pacific and Bering Sea. Oceanogr. Acta 8: 185–196

    CAS  Google Scholar 

  • Schnack, S. B. (1985). A note on the sedimentation of particulate matter in Antarctic waters during summer. Meeresforschungsergebnisse 30: 306–315

    Google Scholar 

  • Steinberg, S. M., Venkatesan, M. I., Kaplan, I. R. (1987). Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.-Part I. Amino acids, carbohydrates and lignin. Mar. Chem. 21: 249–265

    Article  CAS  Google Scholar 

  • Strickland, J. D. H., Parsons, T. R. (1969). A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can 167: 1–311

    Google Scholar 

  • Suess, E. (1980). Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, Lond. 288: 260–263

    Article  CAS  Google Scholar 

  • Sweeney, R. E., Liu, K. K., Kaplan, I. R. (1978). Ocean nitrogenisotopes and their use in determining the source of sedimentary nitrogen. N. Z. Dept. Sci. Ind. Res., Bull. 220: 9–26

    CAS  Google Scholar 

  • Tanoue, E., Handa, N. (1980). Vertical transport of organic materials in the northern North Pacific as determined by sediment trap experiment. Part I. Fatty acid composition. J. oceanogr. Soc. Japan 36: 231–245

    Article  Google Scholar 

  • Tseitlin, V. B. (1983). Energy requirement and growth of deep-water animal. Zh. Obshch. Biol. 44: 71–77

    Google Scholar 

  • Wada, E. (1980). Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. In: Goldberg, F. D., Horibe, Y., Saruhashi, K. (eds). Isotope marine chemistry. Uchita-Rokkakuho, Tokyo, p. 375–398

    Google Scholar 

  • Wada, E., Hattori, A. (1976). Natural abundance of 15N in particulate organic matter in the North Pacific. Geochim. cosmochim Acta 40: 249–251

    Article  Google Scholar 

  • Wada, E., Terazaki, M., Kabaya, Y., Nemoto, T. (1987). 15N and 13C abundancies in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Res. 34: 829–841

    Article  CAS  Google Scholar 

  • Wakeham, S. G., Farrington, J. W., Gagosian, R. B., Lee, C., De-Baar, H., Nigrelli, G. E., Tipp, B. W., Smith, S. O., Frew, N. M. (1980). Organic matter fluxes from sediment traps in the equatorial Atlantic Ocean. Nature, Lond. 286: 798–800

    Article  CAS  Google Scholar 

  • Wefer, G., Fischer, G., Fuetterer, D., Gersonde, R. (1988). Seasonal particle flux in the Bransfield Strait, Antarctica. Deep-Sea Res. 35: 891–898

    Article  CAS  Google Scholar 

  • Wefer, G., Suess, E., Balzer, W., Liebezeit, G., Muller, P. J., Ungerer, A., Zenk, W. (1982). Flux of biogenic compoenents from sediment trap deployment in circumpolar waters of the Drake Passage. Nature, Lond. 229: 145–147

    Article  Google Scholar 

  • Weiner, S., Hood, L. (1975). Soluble protein of the organic matric of mollusk shells: a potential template for shell formation. Science, N.Y. 190: 987–989

    Article  CAS  Google Scholar 

  • Wissler, R. W., Steffee, C. H., Frazier, L. E., Woolridge, R. L., Benditt, E. D. (1948). Studies in amino acids in maintenance of the adult albino rat. J. Nutr. 36: 245–262

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Anraku, Suva

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handa, N., Nakatsuka, T., Fukuchi, M. et al. Vertical fluxes and ecological significance of organic materials during the phytoplankton bloom during austral summer in Breid Bay, Antarctica. Marine Biology 112, 469–478 (1992). https://doi.org/10.1007/BF00356292

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356292

Keywords

Navigation