Skip to main content
Log in

Genetic population structure in two tropical sponge-dwelling shrimps that differ in dispersal potential

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The spatial context in which “host races” of parasitic animals originate is a central issue in the controversial theory of sympatric speciation. Sponge-dwelling shrimps in the genus Synalpheus provide a good system for evaluating the possibility of resource-associated divergence in sympatry. I used allozyme electrophoresis to assess the genetic population structure of two Caribbean Synalpheus species sampled in 1988 to 1990 at a hierarchy of spatial scales. S. brooksi Coutière is a host-generalist, using several sponge species in an area, and develops directly, with no planktonic larval stage. G-tests and estimates of F ST revealed highly structured populations in this species, with significant differentiation among samples from individual reefs within a region, and strong divergence among regions (Panama, Belize, Florida). Moreover, samples of S. brooksi taken from the two sponges Spheciospongia vesparium (Lamarck) and Agelas clathrodes (Schmidt) in Panama, and separated by ≤3 km, showed significant differentiation at both of the loci that were polymorphic in these populations. Genetic distances between these host-associated populations averaged >60% greater than distances between samples from the same host species and were comparable to, or greater tha, those for some inter-regional comparisons. These genetic data corroborate a previous finding of demographic differences between the same populations. The second species, S. pectiniger Coutière, occurs only in Spheciospongia vesparium, and produces swimming larvae. Although allele frequencies in this species differed significantly among the three regions, S. pectiniger showed no differentiation within regions, and significantly lower differentiation (F ST) among regions than its direct-developing congener. These data suggest that genetic population structure in these two commensal crustaceans is related to dispersal potential, and that restricted dispersal may allow the divergence of host-associated populations on a local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Banner, D. M., Banner, A. H. (1975). The alpheid shrimp of Australia. Part 2: the genus Synalpheus. Rec. Aust. Mus. 29: 267–389

    Google Scholar 

  • Brewer, G. J. (1970). Introduction to isozyme techniques. Academic Press, New York

    Google Scholar 

  • Bruce, A. J. (1976). Shrimps and prawns of coral reefs, with special reference to commensalism. In: Jones, O. A., Endean, R. (eds.) Biology and geology of coral reefs, Vol. III. Biology 2. Academic Press, New York

    Google Scholar 

  • Bruce, A. J. (1978). The evolution and zoogeography of shallow-water tropical shrimps. Inf. Ser. Dep. scient. ind. Res. N.Z. 137: 337–355

    Google Scholar 

  • Burton, R. S. (1983). Protein polymorphisms and genetic differentiation of marine invertebrate populations. Mar. Biol. Lett. 4: 193–206

    Google Scholar 

  • Burton, R. S., Feldman, M. W. (1982). Population genetics of coastal and estuarine invertebrates: does larval behavior influence population structure? In: Kennedy, V. S. (ed.) Estuarine comparisons. Academic Press, New York, p. 537–551

    Google Scholar 

  • Bush, G. L. (1975). Modes of animal speciation. A. Rev. Ecol. Syst. 6: 339–364

    Google Scholar 

  • Clayton, J. W., Tretiak, D. N. (1972). Amine citrate buffers in starch gel electrophoresis. J. Fish. Res. Bd Can. 29: 1169–1172

    Google Scholar 

  • Dardeau, M. R. (1984). Synalpheus shrimps (Crustacea: Decapoda: Alpheidae). I. The gambarelloides group, with a description of a new species. Mem. ‘Hourglass’ Cruises 7 (Part 2): 1–125

    Google Scholar 

  • Dobkin, S. R. (1965). The first post-embryonic stage of Synalpheus brooksi Coutiere. Bull. mar. Sci. 15: 450–462

    Google Scholar 

  • Dobkin, S. R. (1969). Abbreviated larval development in caridean shrimps and its significance in the artifical culture of these animals. F.A.O. Fish. Rep. 57: 935–946

    Google Scholar 

  • Duffy, J. E. (1992). Host use patterns and demography in a guild of tropical sponge-dwelling shrimps. Mar. Ecol. Prog. Ser. 90: 127–138

    Google Scholar 

  • Feder, J. L., Chilcote, C. A., Bush, G. L. (1990a). Regional, local, and microgeographic allele frequency variation between apple and hawthorn populations of Rhagoletis pomonella in western Michigan. Evolution, Lawrence, Kansas 44: 595–608

    Google Scholar 

  • Feder, J. L., Chilcote, C. A., Bush, G. L. (1990b). The geographic pattern of genetic differentiation between host-associated populations of Rhagoletis pomonella (Diptera: Tephritidae) in the eastern United States and Canada. Evolution, Lawrence, Kansas 44: 570–594

    Google Scholar 

  • Futuyma, D. J., Mayer, G. C. (1980). Non-allopatric speciation in animals. Syst. Zool. 29: 254–271

    Google Scholar 

  • Guttman, S. I., Wood, T. K., Karlin, A. A. (1981). Genetic differentiation along host plant lines in the sympatric Enchenopa binotata Say complex (Homoptera: Membracidae). Evolution, Lawrence, Kansas 35: 205–217

    Google Scholar 

  • Harris, H., Hopkinson, D. A. (1976). Handbook of enzyme electrophoresis in human genetics. American Elsevier, New York

    Google Scholar 

  • Hedgecock, D. (1986). Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull. mar. Sci. 39: 550–564

    Google Scholar 

  • Hedgecock, D., Tracey, M. L., Nelson, K. (1982). Genetics. In: Abele, L. G. (ed.) The biology of Crustacea, Vol. 2. Embryology, morphology, and genetics. Academic Press, New York, p. 283–403

    Google Scholar 

  • Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75: 800–802

    Google Scholar 

  • Jablonski, D., Lutz, R. A. (1983). Larval ecology of marine benthic invertebrates: paleobiological implications. Biol. Rev. 58: 21–89

    Google Scholar 

  • Jaenike, J. (1981). Criteria for ascertaining the existence of host races. Am. Nat. 117: 830–834

    Google Scholar 

  • Katakura, H., Shioi, M., Kira, Y. (1989). Reproductive isolation by host specificity in a pair of phytophagous ladybird beetles. Evolution, Lawrence, Kansas 43: 1045–1053

    Google Scholar 

  • Knowlton, N. (1986). Cryptic and sibling species among the decapod Crustacea. J. Crust. Biol. (Lawrence, Kansas) 6: 356–363

    Google Scholar 

  • Knowlton, N., Keller, B. D. (1986). Larvae which fall far short of their potential: highly localized recruitment in an alpheid shrimp with extended larval development. Bull. mar. Sci. 39: 213–223

    Google Scholar 

  • Lessios, H. A. (1992). Testing electrophoretic data for agreement with Hardy-Weinberg expectations. Mar. Biol. 112: 517–523

    Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Mitter, C., Farrell, B., Wiegmann, B. (1988). The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am. Nat. 132: 107–128

    Google Scholar 

  • Palumbi, S. R. (1992). Marine speciation on a small planet. Trends Ecol. Evol. 7: 114–118

    Google Scholar 

  • Patton, W. K. (1976). Animal associates of living reef corals. In: Jones, O. A., Endean, R. (eds.). Biology and geology of coral reefs, Vol. III. Biology 2. Academic Press, New York, p. 1–43

    Google Scholar 

  • Pearse, A. S. (1934). Inhabitants of certain sponges at Dry Tortugas. Pap. Tortugas Lab. 28: 119–122

    Google Scholar 

  • Price, P. W. (1980). Evolutionary biology of parasites. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Prokopy, R. J., Diehl, S. R., Cooley, S. S. (1988). Behavioral evidence for host races in Rhagoletis pomonella flies. Oecologia 76: 138–147

    Google Scholar 

  • Ridgway, G. J., Sherburne, S. W., Lewis R. D. (1970). Polymorphisms in the esterases of Atlantic herring. Trans. Am. Fish. Soc. 99: 147–151

    Google Scholar 

  • Robertson, D. R. (1987). Responses of two coral reef toadfishes to the demise of their primary prey, the sea urchin. Copeia 1987: 637–642

    Google Scholar 

  • Sastry, A. N. (1983). Pelagic larval ecology and development. In: Vernberg, F. J., Vernberg, W. B. (eds.) The biology of Crustacea, Vol. 7. Behavior and ecology. Academic Press, New York

    Google Scholar 

  • Scheltema, R. S. (1971). Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biol. Bull. mar. biol. Lab., Woods Hole 140: 284–322

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old field mouse (Peromyscus polionotus). Stud. Genet., Austin, Tex. (Univ. Tex. Publ. No. 7103) 4: 49–90

    Google Scholar 

  • Slatkin, M. (1985). Gene flow in natural populations. A. Rev. Ecol. Syst. 16: 393–430

    Google Scholar 

  • Smith, D. C. (1988). Heritable divergence of Rhagoletis pomonella host races by seasonal asynchrony. Nature, Lond. 336: 66–67

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. Freeman, San Francisco

    Google Scholar 

  • Stevens, P. M. (1990). A genetic analysis of the pea crabs (Decapoda: Pinnotheridae) of New Zealand. I. Patterns of spatial and host-associated genetic structuring in Pinnotheres novaezelandiae Filhol. J. exp. mar. Biol. Ecol. 141: 195–212

    Google Scholar 

  • Strong, D. R., Lawton, J. H., Southwood, R. (1984). Insects on plants. Harvard University Press, Cambridge

    Google Scholar 

  • Swofford, D. L., Selander, R. K. (1981). BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283

    Google Scholar 

  • Tauber, C. A., Tauber, M. J. (1989). Sympatric speciation in insects: perception and perspective. In: Otte, D., Endler, J. A. (eds.) Speciation and its consequences. Sinauer Associates, Sunderland, Massachusetts, p. 307–344

    Google Scholar 

  • Waring, G. L., Abrahamson, W. G., Howard, D. J. (1990). Genetic differentiation among host-associated populations of the gall-maker Eurosta solidaginis (Diptera: Tephritidae). Evolution, Lawrence, Kansas 44: 1648–1655

    Google Scholar 

  • Weir, B. S. (1990). Intraspecific differentiation. In: Hillis, D. M., Moritz, C. (eds.) Molecular systematics. Sinauer Associates, Sunderland, Massachusetts, p. 373–410

    Google Scholar 

  • Weir, B. S., Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, Lawrence, Kansas 38: 1358–1370

    Google Scholar 

  • Wood, T. K., Guttman, S. I. (1982). Ecological and behavioral basis for reproductive isolation in the sympatric Enchenopa binotata complex (Homoptera: Membracidae). Evolution, Lawrence, Kansas 36: 233–242

    Google Scholar 

  • Wood, T. K., Olmstead, K. L., Guttman, S. I. (1990). Insect phenology mediated by host-plant water relations. Evolution, Lawrence, Kansas 44: 629–636

    Google Scholar 

  • Workman, P. L., Niswander, J. D. (1970). Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am. J. Hum. Genet. 22: 24–49

    Google Scholar 

  • Wright, S. (1978). Evolution and the genetics of populations, Vol. 4. Variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.P. Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duffy, J.E. Genetic population structure in two tropical sponge-dwelling shrimps that differ in dispersal potential. Marine Biology 116, 459–470 (1993). https://doi.org/10.1007/BF00350063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350063

Keywords

Navigation