Skip to main content
Log in

Histological and biochemical bases of defense mechanisms in four species of Polybranchioidea ascoglossan molluscs

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The multiple defensive strategies of four Mediterranean ascoglossan molluscan species, belonging to two different Polybranchioidea families, Cyerce cristallina (Trinchese, 1881) and Caliphylla mediterranea (Costa A., 1869) (Polybranchiidae), and Ercolania funerea (Costa A., 1867) and Placida dendritica (Alder and Hancock, 1843) (Stiligeridae), were studied. E. funerea, P. dendritica and C. mediterranea were collected from the lake Fusaro (Arco Felice, Naples) in 1992. C. cristallina was collected from Capo Miseno (Bay of Naples) in 1991. C. cristallina and E. funerea easily undergo autotomy of dorso-lateral appendages (cerata) followed by an extraordinarily quick (8 to 10 d) regeneration of the latter. Histological analyses showed the presence, at the basis of both normal and regenerated cerata of these species, of a muscular sphincter which facilitates the autotomic process. C. mediterranea and P. dendritica, which do not undergo autotomy, lack this anatomical feature but feed upon algae belonging to the Chaetomorpha and Bryopsis genera, and, as shown by electron microscopy studies, retain large quantities of chloroplasts which they use as camouflage amidst algae and to escape predation. E. funerea also exploits this behavioral defense mechanism. Histological investigations also revealed in the cerata of all four species several multi-cellular mucous glands responsible for the secretion of the slime typical for these molluscs. C. cristallina, E. funerea and P. dendritica secrete large amounts of slime, whose extracts displayed ichthyotoxic activity when assayed by the Gambusia affinis ichthyotoxicity assay, while extracts of C. mediterranea slime were not toxic. A chemical analysis of the slime, mantle and cerata led to the isolation of polypropionate α- and γ-pyrones from all species except C. mediterranea. These secondary metabolites possess structures that differ only by the degree of methylation and the geometry of double bonds of the side chain and are specifically distributed in cerata and slime of C. cristallina and E. funerea. The pyrones also display different activities in the Hydra vulgaris regeneration assay and in the G. affinis ichthyotoxicity test and, depending on their structural features and tissue distribution, are likely to play a role either as defense allomones or as supportive inducers of cerata regeneration. In conclusion, combined biological observations and histological and chemical techniques generated valuable information on the defensive behavior of these four ascoglossan species which exploit various combinations of the same behavioral and/or chemical defensive strategies and thus successfully avoid predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brown, J. L. (1975) The evolution of behaviour. W. W. Norton & Co. Inc., New York

    Google Scholar 

  • Cimino, G., Crispino, A., Di Marzo, V., Gavagnin, M., Ros, J. D. (1990). Oxytoxins, bioactive molecules produced by the marine opisthobranch mollusc Oxynoe olivacea from a diet-derived precursor. Experientia 46: 767–770

    Google Scholar 

  • Cimino, G., Sodano, G. (1989) The chemical ecology of Mediterranean opisthobranchs. Chem. Scr. 29: 389–394

    Google Scholar 

  • Clark, K. B., Jensen, K. R., Stirts, H. (1990). Survey for functional kleptoplasty among West Atlantic Ascoglossa (Sacoglossa, Mollusca: Opisthobranchia). Veliger 33: 339–345

    Google Scholar 

  • Coll, J. C., La Barre, S., Sammarco, P. W., Williams, F. T., Bakus, G. J. (1982). Chemical defences in soft corals (Coelenterata: Octocorallia) of the Great Barrier Reef: a study of comparative toxicities. Mar. Ecol. Prog. Ser. 8: 271–278

    Google Scholar 

  • Dawe, R. D., Wright, J. L. C. (1986). The major polypropionate metabolites from the sacoglossan mollusc Elysia chlorotica. Tetrahedron Lett. 27: 2559–2562

    Google Scholar 

  • De Petrocellis, B., De Petrocellis, L., Maharajan, V., Quagliarotti, G., Minei, R. (1985). Stimulation of tentacle regeneration in Hydra by phorbol ester TPA. Acta Embryol. Morph. exp. 6: 51–59

    Google Scholar 

  • De Petrocellis, L., Di Marzo, V., Arca', B., Gavagnin, G., Minei, R., Cimino, G. (1991). The effect of diterpenoidic diacylglycerols on tentacle regeneration in Hydra vulgaris. Comp. Biochem. Physiol. 100C: 603–607

    Google Scholar 

  • De Petrocellis, L., Maharajan, V., De Petrocellis, B., Minei, R. (1986). Bud induction in decapitated Hydra attenuata by 5-azacytidine: a morphological study. J. Embryol. exp. Morph. 93: 105–119

    Google Scholar 

  • Di Marzo, V., Vardaro, R. R., De Petrocellis, L., Villani, G., Minei, R., Cimino, G. (1991). Cyercenes, novel pyrones from the ascoglossan mollusc Cyerce cristallina. Tissue distribution, biosynthesis and possible involvement in defense and regenerative processes. Experientia 47: 1221–1227

    Google Scholar 

  • Faulkner, D. J. (1992). Marine natural products. Nat. Product Rep. (Lond.), 9: 322–364

    Google Scholar 

  • Faulkner, D. J., Ghiselin, M. T. (1983). Chemical defense and evolutionary ecology of Dorid nudibranchs and some other opisthobranch gastropods. Mar. Ecol. Prog. Ser. 13: 295–301

    Google Scholar 

  • Graves, D. A., Gibson, M. A., Bleakney, J. S. (1979). The digestive diverticulae of Alderia modesta and Elysia chlorotica (Opisthobranchia: Sacoglossa). Veliger 21: 415–422

    Google Scholar 

  • Greene, R. W., Muscatine, L. (1972). Symbiosis in sacoglossan opisthobranchs: photosynthetic products of animal-chloroplast associations. Mar. Biol. 14: 253–259

    Google Scholar 

  • Gunthorpe, L., Camerom, A. (1987). Bioactive properties of extracts from Australian dorid nudibranchs. Mar. Biol. 94: 39–43

    Google Scholar 

  • Hagadone, M. R., Burreson, B. J., Scheuer, P. J. (1979). Defense allomones of the nudibranch Phyllidia varicosa Lamarck 1801. Helv. chim. Acta 62: 2484–2494

    Google Scholar 

  • Hay, M. E., Pawlik, J. R., Duffy, J. E., Fenical, W. (1989). Seaweedherbivore-predator interactions: host-plant specialization reduces predation on small herbivores. Oecologia 81: 418–427

    Google Scholar 

  • Herdman, W. A., Clubb, J. A. (1890). Third report upon the nudibranchiata of the L.M.B.C. district. Proc. biol. Soc. Liverpool 3: 131–169

    Google Scholar 

  • Hinde, R., Smith, D. C. (1974). Chloroplast symbiosis and the extent to which it occurs in Sacoglossa (Gastropoda: Mollusca). Biol. J. Linn. Soc. 6: 349–356

    Google Scholar 

  • Ireland, C., Faulkner, J. (1981). The metabolites of the marine molluscs Tridachiella diomedea and Tridachia crispata. Tetrahedron 37: 233–240

    Google Scholar 

  • Ireland, C., Scheuer, P. J. (1979). Photosynthetic marine mollusks: In vivo 14C incorporation into metabolites of the sacoglossan Placobranchus ocellatus. Science, N.Y. 205: 922–923

    Google Scholar 

  • Karuso, P. (1987). Chemical ecology of the nudibranchs. In: Scheuer, P. J. (ed.) Bioorganic marine chemistry. I. Springer-Verlag, New York, p. 31–60

    Google Scholar 

  • Ksebati, M. B., Schmitz, F. J. (1985). Tridachiapyrones: Polypropionate-derived metabolites from the sacoglossan mollusc Tridachia crispata. J. org. Chem. 50: 5637–5642

    Google Scholar 

  • Lewin, R. A. (1970). Toxin secretion and tail autotomy by irritated Oxynoe panamensis. Pacif. Sci. 24: 356–358

    Google Scholar 

  • Marin, A., Di Marzo, V., Cimino, G. (1991). A histological and chemical study of the cerata of the opisthobranch mollusc Tethys fimbria. Mar. Biol. 111: 353–358

    Google Scholar 

  • Marin, A., Ros, J. D. (1988). Los sacoglosos (Mollusca: Opisthobranchia) del sudeste iberico. Catalogo de las especies y presencia de chloroplastos algales en las mismas. Iberus 8: 25–49

    Google Scholar 

  • Marin, A., Ros, J. D. (1989). The chloroplast-animal association in four iberian sacoglossan opisthobranchs: Elysia timida, Elysia translucens, Thuridilla hopei and Boselia mimetica. Scientiea mar. 53: 429–440

    Google Scholar 

  • Muscatine, L., Greene, R. W. (1973). Chloroplasts and algae as symbionts in molluscs. Int. Rev. Cytol. 36: 137–169

    Google Scholar 

  • Ros, J. D. (1976). Sistemas de defensa en los opistobranquios. Oecologia aquat. (Barcelona), 2: 41–77

    Google Scholar 

  • Roussis, V., Pawlik, J. R., Hay, M. E., Fenical W. (1990). Secondary metabolites of the chemically rich ascoglossan Cyerce nigricans. Experientia 46: 327–329

    Google Scholar 

  • Sammarco, P. W., Coll, J. C. (1988). The chemical ecology of alcyonarian corals (Coelenterata: Octocorallia). In: Scheuer, P. J. (ed.) Bioorganic marine chemistry. 2. Springer Verlag, New York, p. 90–92

    Google Scholar 

  • Schaller, H. C., Bodenmuller, H. (1981). Isolation and amino acid sequence of a morphogenetic peptide from hydra. Proc. natn. Acad. Sci. U.S.A. 78: 7000–7004

    Google Scholar 

  • Schulte, G. R., Scheuer, P. J. (1982). Defense allomones of some marine mollusks. Tetrahedron 38: 1857–1863

    Google Scholar 

  • Stasek, C. R. (1967). Autotomy in the Mollusca. Occ. Pap. Calif. Acad. Sci. 61: 1–44

    Google Scholar 

  • Takabayashi, J., Takahashi, S. (1990). An allelochemical elicits arrestment in Aponteles Kariyei in feces of nonhost lareyi. J. Chem. Ecol. 16: 2009–2017

    Google Scholar 

  • Taylor, D. L. (1968). Chloroplasts as symbiotic organelles in the digestive gland of Elysia viridis (Gastropoda: Opisthobranchia). J. mar. biol. Ass. U.K. 48: 1–15

    Google Scholar 

  • Thompson, T. E. (1960). Defensive adaptations in opisthobranchs, J. mar. biol. Ass. U.K., 39: 123–134

    Google Scholar 

  • Todd, C. (1981). The ecology of nudibranch molluscs. Oceanogr. mar. biol. A. Rev. 19: 141–234

    Google Scholar 

  • Trench, R. K. (1975). Of “leaves that crawl”: functional chloroplasts in animal cells. Symp. Soc. exp. Biol. 29: 229–265

    Google Scholar 

  • Vardaro, R. R., Di Marzo, V., Cimino, G. (1992a). Placidenes: cyercene-like polypropionate γ-pyrones from the Mediterranean ascoglossan mollusc Placida dendritica. Tetrahedron Lett. 33: 2875–2878.

    Google Scholar 

  • Vardaro, R. R., Di Marzo, V., Crispino, A., Cimino, G. (1991). Cyercenes, novel polypropionate pyrones from the autotomizing Mediterranean mollusc Cyerce cristallina. Tetrahedron 47: 5569–5576

    Google Scholar 

  • Vardaro, R. R., Di Marzo, V., Marin, A., Cimino, G. (1992b). α-and γ-pyrone-polypropionates from the Mediterranean ascoglossan mollusc Ercolania funerea. Tetrahedron 48: 9561–9566

    Google Scholar 

  • Warmke, G. L., Almodovar, L. R. (1972). Observations on the life cycle and regeneration in Oxynoe antillarum, Morch, an ascoglossan opisthobranch from the Caribbean. Bull. mar. Sci. 22: 67–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Marzo, V., Marin, A., Vardaro, R.R. et al. Histological and biochemical bases of defense mechanisms in four species of Polybranchioidea ascoglossan molluscs. Marine Biology 117, 367–380 (1993). https://doi.org/10.1007/BF00349312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349312

Keywords

Navigation