Skip to main content
Log in

Sensitivity of zooxanthellae and non-symbiotic microalgae to stimulation of photosynthate excretion by giant clam tissue homogenate

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Stimulation of photosynthate excretion from zooxanthellae and free-living algae by tissue homogenate of several bivalves was studied. Mantle tissue homogenate of Tridacna derasa enhanced 10-to 15-fold excretion of photosynthetically fixed carbon from freshly isolated zooxanthellae within 2 h incubation. Maximum carbon excretion was 35 to 45% of the total carbon fixed. This excretion stimulating activity was detected in the homogenates of the mantle, adductor muscle, gill, and kidney. However, no excretion stimulating activity was detected in the haemolymph. The excretion stimulation activity of mantle homogenate, directed against freshly isolated zooxanthellae from T. derasa, was higher in bivalves belonging to the Tridacnidae (T. derasa, T. crocea, T. maxima, T. squamosa, Hippopus hippopus) than in the Cardiidae (Fragum fragum, F. mundum, F. unedo), non-symbiotic bivalves (Mytilus edulis, Meretrix lusoria, Ruditapes philippinarum) or gastropods (Umbonium giganteum, Turbo argyrostoma). The mantle homogenate of T. derasa enhanced photosynthate excretion by free-living algae belonging to the Dinophyceae (Prorocentrum micans, Amphidinium carterae, and Heterocapsa triquetra) but did not enhance its excretion by free-living algae belonging to the Chlorophyceae, Cyanophyceae, Rhodophyceae, Prasinophyceae, and Haptophyceae. T. derase used in this study originated from Belau (Palau). T. crocea, T. squamosa, T. maxima, H. hippopus and F. unedo were collected at Ishigaki Island in Okinawa in 1992. F. mundum and F. fragm were collected at Okinawa Island in 1992.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T., Tsuzuki, M., Miyachi, S. (1987). Transport and fixation of inorganic carbon during photosynthesis of Anabaena grown under ordinary air. I. Active species of inorganic carbon utilized for photosynthesis. Pl. Cell Physiol. 28: 273–281

    Google Scholar 

  • Blank, R. J., Trench, R. K. (1985). Speciation and symbiotic dinoflagellates. Science, N. Y. 229: 656–658

    Google Scholar 

  • Borowitzka, M. A., Larkum, A. W. D. (1976). Calcification in the green alga Halimeda. II. The exchange of Ca2+ and the occurrence of age gradients in calcification and photosynthesis. J. exp. Bot. 27: 864–878

    Google Scholar 

  • Bradford, M. M. (1976). A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyl. Biochem. 72: 248–254

    Google Scholar 

  • Cernichiari, L., Muscatine, L., Smith, D. C. (1969). Maltose excretion by the symbiotic algae of Hydra viridis. Proc. R. Soc. Lond. (Ser. B) 173: 557–576

    Google Scholar 

  • Cook, C. B. (1983). Metabolic interchange in algae-invertebrate symbiosis. Int. Rev. Cytol. 14: 117–210

    Google Scholar 

  • Fankboner, P. V. (1971). Intracellular digestion of symbiotic zooxanthellae by host amoebocytes in giant clams (Bivalvia: Tridacnidae), with a note on the nutritional role of the hypertrophied siphonal epidermis. Biol. Bull. mar. biol. Lab., Woods Hole 141: 222–234

    Google Scholar 

  • Goreau, T. F., Goreau, N. I., Yonge, C. M. (1973). On the utilization of photosynthetic products from zooxanthellae and of a dissolved amino acid in Tridacna maxima f. elongata (Mollusca: Bivalvia). J. Zool., Lond. 169: 417–454

    Google Scholar 

  • Guillard, R. R. L., Ryther, J. H. (1962). Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239

    Google Scholar 

  • Hinde, R. (1988). Factors produced by symbiotic marine invertebrates with affect translocation between the symbionts. In: Scannerini S. et al. (ed.) NATO ASI Series, Vol. H17. Cell to cell signals in plant, animal and microbial symbiosis. Springer-Verlag, Berlin, p. 311–324

    Google Scholar 

  • Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c 1, and c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194

    Google Scholar 

  • Kawaguti, S. (1950). Observations on the heart shell, Corculum cardissa (L.) and its associated zooxanthellae. Pacif. Sci. 4: 43–49

    Google Scholar 

  • Kawaguti, S. (1966). Electron microscopy on the mantle of the giant clam with special reference to zooxanthellae and iridophores. Biol. J. Okayama Univ. 12: 81–92

    Google Scholar 

  • Kawaguti, S. (1968). Electron microscopy on zooxanthellae in the mantle nad gill of the heart shell. Biol. J. Okayama Univ. 14: 1–12

    Google Scholar 

  • Kawaguti, S. (1983). The third record of association between bivalve molluses and zooxanthellae. Proc. Japan Acad. 59 (Ser. B): 17–20

    Google Scholar 

  • Keller, M. D., Selvin, R. C., Claus, W., Guillard, R. R. L. (1987). Media for the culture of oceanic ultraplankton. J. Phycol. 23: 633–638

    Google Scholar 

  • Koch, W. (1953). Untersuchungen an bakterienfreien Massenkulturen der einzelligen Rotalge Porphyridium cruentum Naegeli. Archs Microbiol. 18: 232–241

    Google Scholar 

  • Mansour, K. (1946). Communication between the dorsal edge of the mantle and the stomach of Tridacna. Nature, Lond. 157: 844

    Google Scholar 

  • Muscatine, L. (1965). Symbiosis of hydra and algae. III Extracellular products of the algae. Comp. Biochem. Physiol. 16: 77–92

    Google Scholar 

  • Muscatine, L. (1967). Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, N. Y. 156: 516–519

    Google Scholar 

  • Muscatine, L. (1990). The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z. (ed.) Coral reefs. Elsevier Science Publishers B. V., Amsterdam, p. 75–87

    Google Scholar 

  • Muscatine, L., Cernichiari, E (1969). Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. mar. biol. Lab., Woods Hole 137: 506–523

    Google Scholar 

  • Muscatine, L., Pool, R. R., Cernichiari, E. (1972). Some factors influencing selective release of soluble organic material by zooxanthellae from reef corals. Mar. Biol. 13: 298–308

    Google Scholar 

  • Norton, J. H., Shepherd M. A., Long H. M., Fitt, W. K. (1992). The zooxanthellal tubular system in the giant clam. Biol. Bull. mar. biol. Lab., Woods Hole 183: 503–506

    Google Scholar 

  • Okaichi, T., Nishio, S., Imatomi, Y. (1982). Collection and mass culture. In: Jap. Fish. Soc. (ed.) Toxic phytoplankton-occurrence, mode of action, and toxins. Koseisha-Koseikaku, Tokyo, p. 23–34 (in Japanese)

    Google Scholar 

  • Streamer, M., Griffiths, D. J., Luong-van Thinh (1988). The products of photosynthesis by zooxanthellae (Symbiodinium microadriaticum) of Tridacna gigas and their transfer to the host. Symbiosis 6: 237–252

    Google Scholar 

  • Sutton, D. C., Hoegh-Guldberg, O. (1990). Host-zooxanthellae interactions in four temperate marine invertebrate symbioses: assessment of effect of host extracts on symbionts. Biol. Bull. mar biol. Lab., Woods Hole 178: 175–186

    Google Scholar 

  • Trench, R. K. (1971). The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. III. The effect of homogenates of host tissues on the excretion of photosynthetic products in vitro by zooxanthellae from two marine coelenterates. Proc. R. Soc. Lond. (Ser. B) 177: 251–264

    Google Scholar 

  • Trench, R. K., Wethey, Porter, D. S. (1981). Observations on the symbiosis with zooxanthellae among the Tridacnidae (Mollusca, Bivalvia). Biol. Bull. mar. biol. Lab., Woods Hole 161: 180–198

    Google Scholar 

  • Umeshita, H., Yamasu, T. (1985). On the morphology of a species of strawberry cockle Fragum sp. Biol. Mag. Okinawa no 23: 50 (in Japanese)

    Google Scholar 

  • Wafar, M. V., Qasim, S. Z. (1975). Carbon fixation and excretion in symbiotic algae (zooxanthellae) in the presence of host homogenates. Indian J. mar. Sci. 4: 43–46

    Google Scholar 

  • Waterbury, J. B., Stanier, R. Y. (1981). Isolation and growth of cyanobacteria from marine and hypersaline environments. In: Starr, M. P., Stolp, H., Trüper, H. G. (eds.) The orokaryotes, Vol. 1. Springer-Verlag, Berlin, p. 221–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Ikeda, Nagasaki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuda, K., Miyachi, S. & Maruyama, T. Sensitivity of zooxanthellae and non-symbiotic microalgae to stimulation of photosynthate excretion by giant clam tissue homogenate. Marine Biology 118, 687–693 (1994). https://doi.org/10.1007/BF00347517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00347517

Keywords

Navigation