Skip to main content
Log in

Evidence for microfloral succession on allochthonous plant litter in Apalachicola Bay, Florida, USA

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Changes in hydrolytic, respiratory,catabolic and lipid biosynthetic activities depend at least in part on successional changes in the microfloral populations of allochthonous plant litter incubated in a semi-tropical estuary. Initial colonization is by populations which have a high content of muramic acid relative to the adenosine triphosphate (ATP) and which are progressively displaced by a microflora with a lower ratio of muramic acid to ATP. Scanning electron micrography of the plant-litter microflora shows a succession of forms, with an initial bacterial colonization and its progressive displacement by more complex forms. Estimates of the microbial mass and the rates of phospholipid synthesis suggest that the detrital microflora has a relatively slow growth rate compared to its growth potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alexander, M.: Biochemical ecology of soil micro-organisms. A. Rev. Microbiol. 18, 217–252 (1964)

    Google Scholar 

  • Anderson, T. F.: Techniques for the preservation of three-dimensional structure in preparing specimens for the electron microscope. Trans. N. Y. Acad. Sci. (Ser. II) 13, 130–134 (1951)

    Google Scholar 

  • Ausmus, B. S.: The use of the ATP assay in terrestrial decomposition studies. In: Modern methods in the study of marine ecology, pp 223–234, Ed. by T. Rosswall,Stockholm: NFR 1973. (Bull. ecol. Res. Comm. Stockholm No. 17)

    Google Scholar 

  • Bligh, E. G. and W. J. Dyer: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)

    Google Scholar 

  • Bott, T. L.: Bacterial growth rates and temperature optima in a stream with a fluctuating thermal regime. Limnol. Oceanogr. 20, 191–197 (1975)

    Google Scholar 

  • Brock, T. D.: Bacterial growth rate in the sea: direct analysis by thymidine autoradiography. Science, N. Y. 155, 81–83 (1967)

    Google Scholar 

  • Brooks, R. D., R. D. Goos and J. McN. Sieburth: Fungal infestation of the surface and interior vessels of freshly collected driftwood. Mar. Biol. 16, 274–278 (1972)

    Google Scholar 

  • Cohen, A. L.: Critical point drying. In: Principles and techniques of scanning electron microscopy, Vol. 1. pp 44–112. New York: Van Nostrand Reinhold Co. 1974

    Google Scholar 

  • Doetsch, R. N. and T. M. Cook: Introduction to bacteria and their ecobiology, 371 pp. Baltimore: University Park Press 1973

    Google Scholar 

  • El-Shazly, K. and R. E. Hungate: Fermentation capacity as a measure of net growth of rumen microorganisms. Appl. Microbiol. 13, 62–69 (1965)

    Google Scholar 

  • Fell, J. W. and I. M. Master: Fungi associated with the degradation of mangrove(Rhizophora mangle L.) leaves in South Florida. In: Estuarine microbial ecology, pp 455–465. Ed. by L. H. Stevenson and R. R. Colwell. Columbia: University of South Carolina Press 1973

    Google Scholar 

  • Fenchel, T.: Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnol. Oceanogr. 15, 14–20 (1970)

    Google Scholar 

  • Frankland, J. C.: Succession of fungi on decaying petioles of Pteridium aquilinum. J. Ecol. 54, 41–63 (1966)

    Google Scholar 

  • Gambaryan, M. E.: Method of determining the generation time of microorganisms in benthic sediments. Microbiology 34, 939–943 (1966)

    Google Scholar 

  • Garrett, S. D.: Soil fungi and soil fertility, 165 pp. Oxford: Pergamon Press 1963

    Google Scholar 

  • Gessner, R. V., R. D. Goos and J. McN. Sieburth: The fungal microcosm of the internodes of Spartina alterniflora. Mar. Biol. 16, 269–273 (1972)

    Google Scholar 

  • Gibbons, R. J. and B. Kapsimalis: Estimates of the overall rate of growth of the intestinal microflora of hamsters,guinea pigs, and mice. J. Bact. 93, 510–512 (1967)

    Google Scholar 

  • — and J. Van Houte: On the formation of dental plaques. J. Periodont. 44, 347–360 (1973)

    Google Scholar 

  • Gray, T. R. G.: Survival of vegetative microbes in soil. Symp. Soc. gen. Microbiol. 26, 327–364 (1976)

    Google Scholar 

  • —, P. Baxby,I. R. Hilland M. Goodfellow: Direct observation of bacteria in soil. In: The ecology of soil bacteria, pp 171–191. Ed. by T. R. G. Gray and D. Parkinson. Toronto: University of Toronto Press 1968

    Google Scholar 

  • —, R. Hissett and T. Duxbury: Bacterial populations of litter and soil in a deciduous woodland. II. Numbers, biomass and growth rates. Revue Ecol. Biol. Sol 11, 15–26 (1974)

    Google Scholar 

  • Gyllenberg, H. G. and E. Eklund: Bacteria. In: Biology of plant litter decomposition, Vol. II. pp 245–268. Ed. by C. H. Dickinson and G. J. F. Pugh. New York: Academic Press 1974

    Google Scholar 

  • Hadzja, O.: A simple method for the quantitative determination of muramic acid. Analyt. Biochem. 60, 512–517 (1974)

    Google Scholar 

  • Harrison, M. J., R. T. Wright and R. Y. Morita: Method for measuring mineralization in lake sediments. Appl. Microbiol. 21, 698–702 (1971)

    Google Scholar 

  • Holm-Hansen, O.: Determination of total microbial biomass by measurement of adenosine triphosphate. In: Estuarine microbial ecology, pp 73–88. Ed. by L. H. Stevenson and R. R. Colwell. Columbia: University of South Carolina Press 1973

    Google Scholar 

  • — and H. W. Paerl: The applicability of ATP determination for estimation of microbial biomass and metabolic activity. Memorie Ist. ital. Idrobiol. 29 (Suppl.), 149–169 (1972)

    Google Scholar 

  • Hudson, H. J.: The development of the saprophytid fungal flora as leaves senesce and fall. In: Ecology of leaf surface microorganisms, pp 447–455. Ed. by T. F. Preece and C. H. Dickinson New York: Academic Press 1971

    Google Scholar 

  • Jannasch, H. W. and G. E. Jones: Bacterial populations in sea water as determined by different methods of enumeration. Limnol. Oceanogr. 4, 128–139 (1959)

    Google Scholar 

  • — and P. H. Pritchard: The role of inert particulate matter in the activity of aquatic micro-organisms. Memorie Ist. ital. Idrobiol. 29 (Suppl.), 289–308 (1972)

    Google Scholar 

  • Jordan, T. L. and J. T. Staley: Electron microscope study of succession in the periphyton community of Lake Washington. Microb. Ecol. 2, 241–251 (1976)

    Google Scholar 

  • Karl, D. M. and P. A. LaRock: Adenosine triphosphate measurements in soil and marine sediments. J. Fish. Res. Bd Can. 32, 599–607 (1975)

    Google Scholar 

  • Kates, M.: Bacterial lipids.In: Advances in lipid research, Vol. 2. pp 17–90. Ed. by R. Paoletti and D. Kritchevsky. New York: Academic Press 1964

    Google Scholar 

  • Kaushik, N. K. and H. B. N. Hynes: Experimental study on the role of autumn-shed leaves in aquatic environments. J. Ecol. 56, 229–243 (1968)

    Google Scholar 

  • Lennarz, W. J.: Lipid metabolism. A. Rev. Biochem. 39, 359–388 (1970)

    Google Scholar 

  • Livingston, R. J., R. L. Iverson, D. H. Estabrook, V. E. Keys and J. Taylor, Jr., Major features of the Apalachicola Bay system: physiography, biota, and resource management. Fla Scient. 37, 245–271 (1974)

    Google Scholar 

  • Mack, W. N., J. P. Mack and A. O. Ackerson: Microbial film development in a trickling filter. Microb. Ecol. 2, 215–226 (1975)

    Google Scholar 

  • Marshall, K. C., R. Stout and R. Mitchell: Selective sorption of bacteria from seawater. Can. J. Microbiol. 17, 1413–1416 (1971)

    Google Scholar 

  • Millar, W. N. andL. E. Casida, Jr.: Evidence for muramic acid in the soil. Can. J. Microbiol. 16, 299–304 (1970)

    Google Scholar 

  • Mishustin, E. N. and V. A. Mirsoeva: Sporeforming bacteria in the soils of the USSR. In: The ecology of soil bacteria, pp 458–473. Ed. by T. R. G. Gray and D. Parkinson.Toronto: University of Toronto Press 1968

    Google Scholar 

  • Newell, S. Y.: Succession and role of fungi in the degradation of red mangrove seedlings. In: Estuarine microbial ecology, pp 467–480. Ed. by L. H. Stevenson and R. R. Colwell. Columbia: University of South Carolina Press 1973

    Google Scholar 

  • Parsons, J. R. and J. D. H. Strickland: On the production of particulate organic carbon by heterotrophic processes in sea water. Deep-Sea Res. 8, 211–222 (1962)

    Google Scholar 

  • Perfil'ev, B. V. and D. R. Gabe: Capillary methods of investigating microorganisms, 627 pp. Toronto: University of Toronto Press 1969

    Google Scholar 

  • Powlson, D. S.: Effects of biocidal treatments on soil organisms. In: Soil microbiology, pp 193–224. Ed. by N. Walker. New York: Wiley 1975

    Google Scholar 

  • Salton, M. R. J.: Microbial cell walls. 94 pp. New York: Wiley 1960

    Google Scholar 

  • Siala, A. H. and T. R. G. Gray: Growth of Bacillus subtilis and spore generation in soil observed by a fluorescent antibody technique. J. gen. Microbiol. 81, 191–198 (1974)

    Google Scholar 

  • Sieburth, J. McN.: Microbial seascapes — a pictorial essay on marine microorganisms and their environments, 244 pp. Baltimore: University Park Press 1975

    Google Scholar 

  • Skerman, T. M.: The nature and development of primary films on surfaces submerged in the sea. N. Z. Jl Sci. Technol. (Sect. B) 38, 44–57 (1956)

    Google Scholar 

  • Skinner, F. A., P. C. T. Jones and J. E. Mollison: A comparison of a direct- and a plate-counting technique for the quantitative estimation of soil micro-organisms.J. gen. Microbiol. 6, 261–271 (1952)

    Google Scholar 

  • Sladeckova, A.: The significance of the periphyton in reservoirs for theoretical and applied limology. Verh. int. Verein. theor. angew. Limnol. 16, 753–758 (1966)

    Google Scholar 

  • Suberkropp, K. F. andM. J. Klug: Decomposition of deciduous leaf litter in a woodland stream. I. A scanning electron microscopic study. Microb. Ecol. 1, 96–103 (1974)

    Google Scholar 

  • Tipper, D. J.: Alkali-catalyzed elimination of D-lactic acid from muramic acid and its derivatives and the determination of muramic acid. Biochemistry, N. Y. 7, 1441–1449 (1968)

    Google Scholar 

  • White, D. C., R. J. Bobbie, S. J. Morrison, D. K. Oosterhof, C. W. Taylor and D. A. Meeter: Determination of microbial activity of estuarine detritus by relative rates of lipid biosynthesis. Limnol. Oceanogr. (In press)

  • — and A. N. Tucker: Phospholipid metabolism during bacterial growth. J. Lipid Res. 10, 220–233 (1969)

    Google Scholar 

  • Wright, R. T. and J. E. Hobbie: The uptake of organic solutes in lake water. Limnol. Oceanogr. 10, 22–28 (1965)

    Google Scholar 

  • Yetka, J. E. and W. J. Wiebe: Ecological application of antibiotics as respiratory inhibitors of bacterial populations. Appl. Microbiol. 28, 1033–1039 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.R. Tripp,Newark

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, S.J., King, J.D., Bobbie, R.J. et al. Evidence for microfloral succession on allochthonous plant litter in Apalachicola Bay, Florida, USA. Mar. Biol. 41, 229–240 (1977). https://doi.org/10.1007/BF00394909

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394909

Keywords

Navigation