Skip to main content
Log in

Turbulent heat transfer for pipe flow with uniform heat generation

Turbulente Wärmeübertragung in Flüssigkeitsströmungen durch Rohre bei gleichmäßiger Wärmeerzeugung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

An Analytic solution is presented of the problem of turbulent heat transfer in pipes with internal heat generation and insulated wall by applying a recently-developed eddy conductivity model. The results agree closely with available experimental data for a wide range of Prandtl number (0.02–10.5).

Zusammenfassung

Eine analytische Lösung des Problems der turbulenten Wärmeübertragung in Rohren mit innerer Wärmeerzeugung und isolierender Wandung wird vermittels eines neu entwickelten Modells für das Wirbelleitvermögen angegeben. Die Ergebnisse stimmen mit den zugänglichen experimentellen Werten innerhalb eines ausgedehnten Bereiches der Prandtl-Zahl (0.02–10.5) befriedigend überein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A+ :

damping factor for eddy viscosity

a:

pipe radius

a+ :

dimensionless pipe radius,\(a\sqrt {\tau _w /\rho /v} \)

B+ :

damping factor for eddy conductivity

Cp :

constant pressure specific heat

k:

thermal conductivity

l:

mixing length

1+ :

dimensionless mixing length,\(l\sqrt {\tau _w /\rho /v} \)

Nu:

Nusselt number

Pr:

Prandtl number

Pe:

Péclet number, Pe=RePr

p:

static pressure

q:

heat flux

Q:

rate of heat generation

Re:

Reynolds number, u(2a)ν

r:

radial coordinate

St:

Stanton number

T:

temperature

u:

axial velocity

u+ :

dimensionless axial velocity,\(u/\sqrt {\tau _w /\rho } \)

x:

axial coordinate

y:

transverse coordinate normal to wall

y+ :

\(y\sqrt {\tau _w /\rho /v} \)

α:

thermal diffusivity

μ:

viscosity

ɛm, ɛh :

eddy viscosity and eddy conductivity, respectively

ν:

kinematic viscosity

ρ:

density

τ:

shearing stress

B:

bulk

h:

heat

m:

momentum

o:

wall

References

  1. Kinney, R.B.; Sparrow, E.M.: Turbulent Pipe Flow of an Internally Heat Generating Fluid, J. of Heat Transfer, Trans. ASME, Series C88 (1966) 314

    Google Scholar 

  2. Chung, B.T.F.; Thomas, L.C.: Turbulent Heat Transfer for Pipe Flow with Prescribed Wall Heat Fluxes and Uniform Heat Sources in the Stream. J. of Heat Transfer, Trans. ASME, Series C96 (1974) 430–431

    Google Scholar 

  3. Muller, G.L.: Experimental Forced Convection Heat Transfer With Adiabatic Walls and Internal Heat Generation in a Liquid Metal. ASME paper 58-HT-17

  4. Poppendiek, H.F.: Forced Convection Heat Transfer in Pipes With Heat Sources Within the Fluid. Chem. Eng. Progress Symposium Series50 (1954) 93

    Google Scholar 

  5. Na, T.Y.; Habib, I.S.: Heat Transfer in Turbulent Pipe Flow Using a New Mixing Length Model. Appl. Sci. Research28 (Nov. 1973) 302–314

    Google Scholar 

  6. Habib, I.S.; Na, T.Y.: Prediction of Heat Transfer in Turbulent Pipe Flowin Pipes With Constant Wall Temperature. J. of Heat Transfer, Trans. ASME, Series C96 (May 1974) 253–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, T.Y., Chiou, J.P. Turbulent heat transfer for pipe flow with uniform heat generation. Wärme- und Stoffübertragung 12, 55–58 (1979). https://doi.org/10.1007/BF01672441

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01672441

Keywords

Navigation