Skip to main content
Log in

The influence of suction on heat and mass transfer in condensation of mixed vapors

Einfluß der Absaugung auf den Wärme- und Stoffübergang bei der Kondensation von Gemischdämpfen

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The film theory by Ackermann can be applied to simultaneous heat and mass transfer processes, if the mass flux normal to the wall is induced by diffusion. Since this condition mostly is not fulfilled when condensing vapor mixtures, an approximative procedure is developed taking into account the influence of suction in condensation heat transfer. The accuracy of the method turns out to be satisfactory compared with results obtained by numerical analysis.

Zusammenfassung

Vorgänge der gleichzeitigen Wärme- und Stoffübertragung lassen sich mit der Ackermannschen Filmtheorie berechnen, wenn der wandnormale Stoffstrom durch Diffusion verursacht wird. Da diese Voraussetzung bei der Kondensation von Gemischdämpfen selten erfüllt ist, wird ein Näherungsverfahren zur Berechnung des Wärmeübergangs unter Berücksichtigung der Absaugung an der Phasengrenze entwickelt. Die erhaltenen Ergebnisse stimmen mit bekannten numerischen Lösungen gut überein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cp :

specific heat capacity

D12 :

binary diffusion coefficient

E:

energy parameter, seeEq.(9)

fi :

suction parameter at the interface

g:

gravitational acceleration

g* :

component of gravitational acceleration in flow direction

ΔhV :

latent heat of vaporzation

k:

correction factor

M:

mass per mol

q:

parameter, see Eq. (27)

q:

heat flux

q0 :

heat flux with vanishing mass transfer resistance

R:

properties parameter, see Eq.(9)

T:

temperature

ΔT=Td-Tw :

temperature difference

u:

velocity in x-direction

vi :

velocity in y-direction at the interface

x:

coordinate along the plate

x1 :

mass species concentration of low boiling component in the liquid

y1 :

mass species concentration of low boiling component in the vapor

Y:

reduced concentration difference

α:

heat transfer coefficient

β:

mass transfer coefficient

δ:

thickness of condensate film

δ′:

modified thickness of condensate film

ηδ :

reduced thickness of condensate film

λ:

thermal conductivity

μ:

dynamic viscosity

ν:

kinematic viscosity

ξ:

dimensionless coordinate, see Eq. (7)

ρ:

density

ϕ:

inclination angle

Gr:

Grashof number, see Eq. (24)

Nu=α·x/λ:

Nusselt number

Pr=ν·ρ·cp/λ:

Prandtl number

Rex =uD·x/ν:

Reynolds number of vapor bulk flow

Sc=ν/D12 :

Schmidt number

Sh=β·x/D12 :

Sherwood number

D:

vapor bulk

i:

interface

k:

corrected

L:

liquid

therm:

thermal suction

w:

wall

0:

vanishing suction

1:

component 1

2:

component 2

References

  1. Ackermann, G.: Wärmeübergang und molekulare Stoffübertragung im gleichen Feld bei großen Temperatur- und Partialdruckdifferenzen, VDI-Forschungsheft Nr. 382, (1937)

  2. Colburn, A.P.; Drew, T.B.: The condensation of mixed vapors. Trans. Am. Chem. Engrs. 33, (1937) 197–215

    Google Scholar 

  3. Röhm, H.-J.: Zur einfachen Berechnung von Dephlegmatoren binärer Dampfgemische, Wärme- und Stoffübertragung 11 (1978) 63–72

    Google Scholar 

  4. Roetzel, W.: Näherungsverfahren zur Berechnung von Kondensatoren für Dampfgemische, Wärme- und Stoffübertragung 8 (1975) 211–218

    Google Scholar 

  5. Sparrow, E.M.; Lin, S.H. Condensation heat transfer in the presence of a noncondensable gas. J. Heat Transfer 86C (1964) 430–436

    Google Scholar 

  6. Minkowycz, W.J.; Sparrow, E.M.: Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties and diffusion, Int. J. Heat Mass Transfer 9 (1966) 1125–1144

    Google Scholar 

  7. Sparrow, E.M.; Minkowycz, W.J.; Saddy, M.: Forced convection condensation in the presence of noncondensables and interfacial resistance, Int. J. Heat Mass Transfer 10 (1967) 1829–1845

    Google Scholar 

  8. Lucas, K.: Habilitationsschrift Ruhr-Universität Bochum (1974); see also, Combined body force and forced convection in laminar film condensation of mixed vapors-integral and finite difference treatment. Int. J. Heat Mass Transfer 19 (1976) 1273–1280

    Google Scholar 

  9. Greiner, M.: Dissertation TU München (1978)

  10. Stephan, K.: Warmeübertragung mit Phasenänderung in verfahrenstechnischen Prozessen, Chemie-Ing.-Technik 50, (1978) 100–107

    Google Scholar 

  11. Hartnett, J.P.; Eckert, E.R.G.: Mass transfer cooling in a laminar boundary layer with constant fluid properties. Trans. ASME 79 (1957) 247–254

    Google Scholar 

  12. Eckert, E.R.G.; Drake, R.M.: Analysis of heat and mass transfer. McGraw-Hill Kogokusha, Tokio (1972)

    Google Scholar 

  13. Rose, J.W.: Private communication (1977)

  14. Eichhorn, R.: The effect of mass transfer on free convection, J. Heat Transfer 82C (1960) 260–263

    Google Scholar 

  15. Sparrow, E.M.; Marschall, E.: Binary, gravity flow film condensation. J. Heat Transfer C 91 (1969) 205–211

    Google Scholar 

  16. Taitel, Y.; Tamir, A.: Film condensation of multicomponent mixtures. Int. J. Multiphase Flow 1, (1974) 697–714

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephan, K., Laesecke, A. The influence of suction on heat and mass transfer in condensation of mixed vapors. Wärme- und Stoffübertragung 13, 115–123 (1980). https://doi.org/10.1007/BF00997641

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00997641

Keywords

Navigation