Skip to main content
Log in

Heat transfer from the heated concave wall of a return bend with rectangular cross section

Wärmeübertragung von einer beheizten konkaven Wand eines Umkehrkrümmers mit rechteckigem Querschnitt

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The characteristics of the turbulent heat transfer along the heated concave walls of return bends which have rectangular cross sections with large aspect ratio have been examined for various clearances of the ducts in detail.

The experiments are carried out under the condition that the concave walls are heated at constant heat flux while the convex walls are insulated. Water as the working fluid is utilized. Using three kinds of clearance of 9, 34, and 55 mm, the Reynolds number in the turbulent range are varied from 5×103 to 8×104 with the Prandtl numbers ranging from 4 to 13.

As a result it is elucidated that both the mean and the local Nusselt numbers are always greater than those for the straight parallel plates or for the straight duct, respectively. This is attributed to Görtier vortices, which are visualized here. It is also found that the more the clearance increases, the more both the local and the mean Nusselt numbers increase.

Correlation equations for the mean and the local Nusselt numbers are determined in the range of parameters covered. Introducing the Richardson number, it appears that the local Nusselt number,Nu x , may be described as the following equation:Nu x =447.745 ·Re 1.497 x ·De −1.596 x ·F 0.960 ·Pr 0.412

Zusammenfassung

Es wird der turbulente Wärmeübergang längs der beheizten konkaven Wand eines Umkehrkrümmers mit rechteckigem Querschnitt und großem Verhältnis Breite zu Höhe bei verschiedenen Höhen untersucht. Die konkaven Wände werden mit konstanter Wärmestromdichte beheizt, die konvexen sind isoliert. Arbeitsfluid ist Wasser. Für die drei Kanalhöhen 9, 34 und 55 mm liegen die Reynolds-Zahlen zwischen 5·103 und 8·104, die Prandtl-Zahlen reichen von 4 bis 13. Es zeigt sich, daß sowohl die mittleren wie die lokalen Nusselt-Zahlen immer größer sind also die für gerade Platten oder gerade Kanäle. Das wird durch Görtier-Wirbel verursacht, die hier sichtbar gemacht werden. Mit steigender Kanalhöhe steigen auch die mittleren und die lokalen Nusselt-Zahlen.

Die lokalen Nusselt-Zahlen im untersuchten Bereich lassen sich durch die GleichungNu x =447.745 ·Re 1.497 x ·De −1.596 x ·F 0.960 ·Pr 0.412 wiedergeben mitDe als Dean-Zahl undF als Richardson-Zahl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

clearance of duct

c p :

specific heat at constant pressure

De :

Dean number,\(\left[ {\bar u \cdot \left( {2c} \right)/v} \right]\sqrt {c/R} \)

De x :

local Dean number,\(\left[ {\bar u \cdot x/v} \right]\sqrt {c/R} \)

dA :

minute area of cross section of duct

d e :

hydraulic diameter of duct

F :

Richardson number, defined in Eq. (8)

f c :

centrifugal force per unit volume, ϱ(¯u 2 R)

G :

Görtler number, (¯u · δ **/v) √δ **/R 0

h m :

mean heat-transfer coefficient, defined in Eq. (3)

h x :

local heat-transfer coefficient atx=x

\(\overline {Nu} \) :

mean Nusselt number,h m · (2c)/λ

Nu x :

local Nusselt number, defined in Eq. (1)

\((Nu_x )_{d_e } \) :

local Nusselt number based on hydraulic diameter,h x ·d e λ

\((Nu_\infty )_{d_e } \) :

Nusselt number of hydrodynamically and thermally fully developed flow through a straight duct according to Deissler's equation based ond e

Pr :

Prandtl number,μ · c p λ

q :

constant heat flux per unit area from concave wall

R :

radius of curvature of center line of passage,R 0-c/2

Re :

Reynolds number,\(\bar u \cdot \left( {2c} \right)/v\)

Re d :

Reynolds number based ond e ,\(\bar u \cdot d_e /v\)

R 0 :

radius of curvature of concave wall

St :

Stanton number,h x /ϱc p \(\bar u\)

T :

local temperature on concave wall atx=x

T f :

temperature of fluid

T in :

bulk temperature in inlet of return bend, defined in Eq. (2)

T w :

general wall temperature

u :

fluid velocity

¯u :

fluid mean velocity

u + :

u/u *

u * :

friction velocity, √τ w

W :

width of duct

x :

streamwise coordinate along concave wall with origin at beginning of heating

y :

coordinate perpendicular tox]

y + :

u * ·y/v

δ ** :

momentum thickness

θ :

angle of advance of concave wall taken from inlet

λ :

thermal conductivity of fluid

μ :

coefficient of viscosity of fluid

ν :

kinematic viscosity of fluid

ϱ :

density of fluid

τ w :

wall shear stress

Φ :

implicit function to determineh x

χ + :

Re /1.20 x ·De /−1.28 x ·F 0.77 ·Pr 0.333

ψ + :

Re 0.8 ·De 0.8 ·pr 0.75

d e :

condition based on hydraulic diameter

L :

condition in which Eq. (6) is realized

∞:

condition of hydrodynamically and thermally fully developed straight flow

References

  1. Itaya, M.: Hydrodynamics. Print of JSME (1959) 146–148

  2. Murakami, M.: Hydraulic resistance of pipes an ducts. Print of JSME (1967) 76–78

  3. Liepmann, H. W.: Investigation of boundary layer transition on concave walls. NACA. Adv. Conf. Rept. 4J28 (1945)

  4. Smith, A. M. O.: On the growth of Taylor-Görtler vortices along highly concave walls. Quart. Appl. Math. 13 (1955) 233–262

    Google Scholar 

  5. Tani, I.: Production of longitudinal vortices in the boundary layer along a concave wall. J. Geophys. Res. 67 (1962) 3075–3080

    Google Scholar 

  6. So, R. M.; Mellor, G. L.: Experiment on turbulent boundary layers on concave wall. Aero. Quart. 26 (1975) 35–40

    Google Scholar 

  7. Ellis, L. B.; Joubert, P. N.: Turbulent shear flow in a curved duct. J. Fluid Mech. 62 (1974) 65–84

    Google Scholar 

  8. Cheng, K. C.; Lin, R. C.; Ou, J. W.: Graetz problem in curved square channels. Trans. ASME J. Heat Transfer 97 (1975) 244–248

    Google Scholar 

  9. Yee, G.; Chilukuri, R.; Humphrey, J. A. C.: Developing flow and heat transfer in strongly curved ducts of rectangular cross section. Trans. ASME J. Heat Transfer 102 (1980) 285–291

    Google Scholar 

  10. Kreith, F.: The influence of curvature on heat transfer to incompressible fluids. Trans. ASME 77 (1955) 1247–1256

    Google Scholar 

  11. Wattendorf, F. L.: A study of the effects of curvature on fully developed turbulent flow. Proceedings of the Royal Society of London 148 (1934) 568–598

    Google Scholar 

  12. Thomann, H.: Effect of streamwise wall curvature on heat transfer in a turbulent boundary layer. J. Fluid Mech. 33 (1968) 283–292

    Google Scholar 

  13. Mayle, R. E.; Blair, M. F.; Kopper, F. C.: Turbulent boundary layer heat transfer on curved surfaces. Trans. ASME J. Heat Transfer 101 (1979) 521–525

    Google Scholar 

  14. Görtier, H.: Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden. Nachr. Ges. Wiss. Göttingen Math.-phys. Kl. 2 (1940) 1–11

    Google Scholar 

  15. Gilroy, K.; Brighton, E.; Gaylor, J. D. S.: Fluid vortices and mass transfer in a curved channel artificial membrane lung. AIChE J. 23 (1977) 106–115

    Google Scholar 

  16. Seki, N.; Fukusako, S.; Yoneta, M.; Ebina, H.: Heat transfer in the return bend with rectangular cross section. Preprint of National Heat Transfer Symposium of Japan 1981

  17. Katto, Y.: Den-netsu-gairon. Yokendo (1976) 100–146

  18. Depew, C. A.: Heat transfer to air in a circular tube having uniform heat flux. Trans. ASME 84 (1962) 186–187

    Google Scholar 

  19. Mills, A. F.: Experimental investigation of turbulent heat transfer in the entrance region of circular conduit. J. Mech. Engng. Sci. 4 (1962) 63–77

    Google Scholar 

  20. Sparrow, E. N.; Hallman, T. M.; Siegel, R.: Turbulent heat transfer in the thermal entrance region of a pipe with uniform heat flux. Applied Scientific Research 7 (1962) 37–52

    Google Scholar 

  21. Hatton, A. P.; Quarmby, A.: The effect of axially varying and unsymmetrical boundary conditions on heat transfer with turbulent flow between parallel plates. Int. J. Heat Mass Transfer 6 (1963) 903–914

    Google Scholar 

  22. Reynolds, W. C.; Kays, W. M.; Kline, S. J.: Heat transfer in a turbulent incompressible boundary layer. NASA Memo. 12-1-58 w (1958)

  23. Klebanoff, P. S.: Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Rep. 1247 (1955)

  24. Bradshow, P.: The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36 (1969) 177–191

    Google Scholar 

  25. Cholette, A.: Chem. Engng. Progress 44 (1948) 81

    Google Scholar 

  26. Sachs, P. S.: Modified correlation for rate of heat transfer to water flowing in tube. J. Mech. Engng. Sci. 4 (1962) 78–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, N., Fukusako, S. & Yoneta, M. Heat transfer from the heated concave wall of a return bend with rectangular cross section. Wärme- und Stoffübertragung 17, 17–26 (1982). https://doi.org/10.1007/BF01686961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01686961

Keywords

Navigation