Skip to main content
Log in

Direct contact heat transfer to a drop translating in a transverse electric field

Direktkontakt-Wärmeübergang an einen in einem elektrischen Feld bewegten Tropfen

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

An experimental study has been performed on heat transfer to a single drop translating in an immiscible liquid on which a steady uniform electric field is imposed perpendicular to the drop path. Particular attention has been paid to the effect of field-induced circulations inside and outside the drop. Three different combinations of liquids were tested: one for which the drop-to-medium permittivity ratio ɛ* multiplied by the drop-tomedium resistivity ratio χ* is large compared to unity and two for which ɛ* χ* ≪ 1. In the former a remarkable enhancement of heat transfer was obtained which could be ascribed to the induced circulations. However, a less remarkable enhancement obtained in the latter two could not be explained by the circulations which are predicted to be vanishingly weak.

Zusammenfassung

Es wurden Experimente über den Wärmeübergang an einem einzelnen Tropfen durchgeführt, der sich in einer mit ihm nicht mischbaren Flüssigkeit senkrecht zu einem elektrischen Feld bewegt. Besondere Aufmerksamkeit wurde der durch das elektrische Feld induzierten Zirkulation im Inneren des Tropfens gewidmet. Es wurden drei verschiedene Kombinationen von Flüssigkeiten getestet, nämlich eine, bei der der Faktor aus der Dielektrizitätskonstanten und dem spezifischen elektrischen Widerstand zwischen Tropfen und Medium groß gegenüber 1 ist, und zwei, für die dieser Faktor klein gegen 1 ist. Im ersten Fall wurde eine merkliche Verbesserung des Wärmeübergangs beobachtet, die man auf die induzierte Zirkulation zurückführen kann. Jedoch kann die Verbesserung, die sich bei den zwei letztgenannten Bedingungen einstellte, nicht durch die dort verschwindend geringen Zirkulationsströmungen erklärt werden, wenn sie auch weniger stark ausgeprägt war.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

D n :

axis of drop normal to electric field

D p :

axis of drop parallel to electric field

D 0 :

equivalent spherical diameter of drop

E :

strength of electric field

Nu :

Nusselt number,α D 0c

p:

normalized strength of electric field, Eq. (2)

Re :

Reynolds numbr, ϱc Ut D0c

Uc :

maximum circulation velocity at the interface

U t :

translational velocity of drop

U + :

circulation-to-translation velocity ratio, Eq. (4)

U +1 :

circulation-to-translation velocity ratio, Eq. (5)

V :

specific circulation velocity to a given system, Eq. (3)

α :

heat transfer coefficient based on surface area of spherical drop

Γ :

dimensionless parameter characterizing circulation velocity, Eq. (1)

δ :

distortion ratio of drop,(D p − Dn)/(Dp+Dn)

ɛ :

permittivity

η :

dynamic viscosity

λ :

thermal conductivity

ϱ :

mass density

σ :

interfacial tension

Φ :

dimensionless parameter characterizing drop deformation, Eq. (2)

χ :

electrical resistivity

c :

continuous phase (medium)

cr:

critical condition for drop burst

d :

dispersed phase (drop)

ex:

experimental

HR:

Hadamard-Rybczynski theory

max:

maximum

th:

theoretical

0:

under no electric field

*:

drop-to-medium ratio

References

  1. Bailes, P. J.; Thornton, J. D.: Electrically Augmented Liquid-Liquid Extraction in a Two-Component System I. — Single Droplet Studies. Proc. Intl. Solvent Extr. Conf. Vol. 2 (1971) 1431–1439

    Google Scholar 

  2. Harker, J. H.; Ahmadzadeh, J.: The Effect of Electric Fields on Mass Transfer from Falling Drops. Int. J. Heat Mass Transfer 17 (1974) 1219–1225

    Google Scholar 

  3. Bailes, P. J.: Solvent Extraction in an Electrostatic Field. Ind. Eng. Chem. Process Des. Dev. 20 (1981) 564–570

    Google Scholar 

  4. Carleson, T. E.; Berg, J. G.: The Effect of Electric Fields on the Absorption of Pure Sulfur Dioxide by Water Drops. Chem. Eng. Sci. 38 (1983) 871–876

    Google Scholar 

  5. Kaji, R; Mori, Y. H.; Tochitani, Y.; Komotori, K.: Direct-Contact Heat Transfer to Drops in an Intermittent Electric Field. Proc. 6th Intl. Heat Transfer Conf. Vol. 3 (1978) 165–170

    Google Scholar 

  6. Kaji, N.; Mori, Y. H.; Tochitani, Y.; Komotori, K: Augmentation of Direct-Contact Heat Transfer to Drops with an Intermittent Electric Field. Trans. ASME, J. Heat Transfer 102 (1980)32–37

    Google Scholar 

  7. Kaji, N.; Mori, Y. H.; Tochitani, Y.; Komotori, K.: Electrohydrodynamic Augmentation of Direct-Contact Heat Transfer to Drops Passing through an Immiscible Dielectric Liquid: Effect of Field-Induced Shuttle Migration between Parallel Plane Electrodes of Drops. Proc. 7th Intl. Heat Transfer Conf. Vol. 5 (1982) 231–236

    Google Scholar 

  8. Mori, Y. H.; Kaji, N.; Tochitani, Y: An Augmentation Method of Heat or Mass Transfer with an Intermittent Electric Field. Japanese Patent No. 1043 731

  9. Mori, Y. H.; Kaji, N.: An Augmentation Method of Heat or Mass Transfer between Drops and a Continuous Fluid Phase with an Electric Field. Japanese Patent pending

  10. Morrison, Jr., F. A.: Transient Heat and Mass Transfer to a Drop in an Electric Field. Trans. ASME, J. Heat Transfer 99 (1977)269–273

    Google Scholar 

  11. Taylor, Sir Geoffrey: Studies in Electrohydrodynamics I. The Circulation Produced in a Drop by an Electric Field. Proc. Roy. Soc. Lond. 291A (1966) 159–166

    Google Scholar 

  12. Griffiths, S. K.; Morrison, Jr., F. A.: Low Peclet Number Heat and Mass Transfer from a Drop in an Electric Field. Trans. ASME, J. Heat Transfer 101 (1979) 484–488

    Google Scholar 

  13. Griffiths, S. K.; Morrison, Jr., F. A.: The Transport from a Drop in an Alternating Electric Field. Int. J. Heat Mass Transfer 26 (1983) 717–726

    Google Scholar 

  14. Chang, L. S.; Carleson, T. E.; Berg, J. C.: Heat and Mass Transfer to a Translating Drop in an Electric Field. Int. J. Heat Mass Transfer 25 (1982) 1023–1030

    Google Scholar 

  15. Chang, L. S.; Berg, J. C.: Fluid Flow and Transfer Behavior of a Drop Translating in an Electric Field at Intermediate Reynolds Numbers. Int. J. Heat Mass Transfer 26 (1983) 823–832

    Google Scholar 

  16. Torza, S.; Cox, R. G.; Mason, S. G.: Electrohydrodynamic Deformation and Burst of Liquid Drops. Phil. Trans. Roy. Soc. Lond. 269A (1971) 295–319

    Google Scholar 

  17. Sample, S. B.; Raghupathy, B.; Hendricks, C. D.: Quiescent Distortion and Resonant Oscillation of a Liquid Drop in an Electric Field. Int. J. Engng. Sci. 8 (1970) 97–109

    Google Scholar 

  18. Atten, P.; Honda, T.: The Electroviscous Effect and Its Explanation I. - The Electrohydrodynamic Origin; Study under Unipolar D.C. Injection. J. Electrostatics 11 (1982) 225–245

    Google Scholar 

  19. Mori, Y. H.; Kaji, N.; Nagashima, A.: Augmentation of Direct-Contact Liquid/Liquid Heat Transfer by the Application of an Electric Field. Research on Effective Use of Thermal Energy (Reports of Special Project Research on Energy under Grant in Aid of Scientific Research of the Ministry of Education, Science and Culture, Japan), SPEY 14 (1985) 75–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaji, N., Mori, Y.H. Direct contact heat transfer to a drop translating in a transverse electric field. Wärme- und Stoffübertragung 20, 11–18 (1986). https://doi.org/10.1007/BF00999731

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999731

Keywords

Navigation