Skip to main content
Log in

Development of a turbulent near-wall temperature model and its application to channel flow

Entwicklung eines turbulenten, wandnahen Temperaturmodells und seine Anwendung auf Kanalströmung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

A numerical study of fluid flow and heat transfer in a two-dimensional channel under fully developed turbulent conditions is reported. A computer program which is capable of treating both forced and natural convection problems under turbulent conditions has been developed. The code uses the high-Reynolds-number form of the two equation turbulent model(k-ɛ) in which a turbulent kinetic energy near-wall model is incorporated in order to accurately represent the behavior of the flow near the wall, particularly in the viscous sublayer where the turbulent Reynolds number is small. A near-wall temperature model has been developed and incorporated into the energy equation to allow accurate prediction of the temperature distribution near the wall and, therefore, accurate calculation of heat transfer coefficients.

The sensitivity of the prediction of flow and heat transfer to variations in the coefficients used in the turbulence model is investigated. The predictions of the model are compared to available experimental and theoretical results; good agreement is obtained. The inclusion of the near-wall temperature model has further improved the predictions of the temperature profile and heat transfer coefficient. The results indicate that the turbulent kinetic energy Prandtl number should be a function of Reynolds number.

Zusammenfassung

Es wird über eine numerische Studie der Strömung und des Wärmetransportes in einem zweidimensionalen Kanal mit voll entwickelter Turbulenz berichtet. Ein Computer-programm wurde entwickelt, das in der Lage ist, sowohl Zwangsais auch Naturkonvektion unter turbulenten Bedingungen zu behandeln. Das Programm verwendet die „High-Reynolds-Number“-Form des turbulenten Zweigleichungsmodells(k-ɛ-Modell in das ein Ansatz für die wandnahe, turbulente, kinetische Energie eingearbeitet ist, um das Verhalten der Strömung nahe der Wand genau wiederzugeben, insbesondere in der viskosen Unterschicht, wo die turbulente Reynolds-Zahl klein ist. Es wurde ein wandnahes Temperaturmodell entwickelt und in die Energiegleichung eingearbeitet, um eine genaue Vorhersage der Temperaturverteilung nahe der Wand zu ermöglichen und damit die Wärmeübergangskoeffizienten genau zu berechnen.

Die Empfindlichkeit für die Vorhersage der Strömung und der Wärmeübertragung auf Veränderungen in den Koeffizienten des verwendeten Turbulenzmodells wird untersucht. Die Vorhersagen des Modells werden mit verfügbaren experimentellen Daten und theoretischen Ergebnissen verglichen. Es wurde gute Übereinstimmung erzielt. Die Einbeziehung des wandnahen Temperaturmodells brachte weitere Verbesserung der Vorhersage des Temperaturprofils und des Wärmeübergangskoeffizienten. Die Ergebnisse zeigen, daß die turbulente, kinetische Prandtl-Zahl eine Funktion der Reynolds-Zahl sein sollte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

empirical coefficient, Eq. (27)

b :

channel width

cl :

constant of proportionality between length scalel and distance from wall (applied over near-wall cell)=2.55, Eq. (17)

C 1, C2,C μ∞ :

constants in thek-ɛ turbulent model, Eq. (8)

c p :

specific heat

E * :

constant in logarithmic velocity profile=5.0, Eq. (12)

k :

turbulent kinetic energy

K :

empirical coefficient, Eq. (27)

l m :

mixing length

Nu :

Nusselt number, Eq. (19)

p :

pressure

Pr :

Prandtl number=ν/α

Re :

Reynolds number=υmb/2ν

Re t :

turbulent Reynolds number, Eq. (10)

Re Γ :

viscous sublayer Reynolds number=y v k 1/2 v /v=20.0

¯Re :

average Reynolds number

t :

time

T :

temperature

u :

velocity inx-direction

ν :

velocity iny-direction

x :

horizontal coordinate; main flow direction

y :

vertical coordinate

α :

thermal diffusivity

ɛ :

dissipation rate of turbulence energy

χ :

von Karman constant=0.4187

χ * :

constant in logarithmic velocity profile=χ C 1/4μ∞ =0.23

λ :

thermal conductivity

μ :

laminar dynamic fluid viscosity

μ t :

turbulent dynamic fluid viscosity

ν :

laminar kinematic fluid viscosity

ϱ :

density

σ k :

turbulent kinetic energy Prandtl number

σ t :

turbulent temperature Prandtl number

σɛ :

turbulent dissipation Prandtl number

τ :

shear stress

b :

bulk

c :

cold

e :

edge of near-wall cell

E :

center of cell adjacent to the near-wall cell

h :

hot

m :

maximum of experimental value

P :

center of near-wall cell

t :

turbulent

υ :

edge of viscous sublayer

w :

wall

References

  1. Jones, W. P.; Launder, B. E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer 15 (1972) 301–314

    Google Scholar 

  2. Jones, W. P.; Launder, B. E.: The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer 16 (1973) 1119–1130

    Google Scholar 

  3. Launder, B. E.; Spalding, D. B.: The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3 (1974) 269–289

    Google Scholar 

  4. Chieng, C. C.; Launder, B. E.: On the calculation of turbulent heat transport downstream from an abrupt pipe expansion. Numerical Heat Transfer 3 (1980) 189–207

    Google Scholar 

  5. Amano, R. S.: Development of a turbulence near-wall model and its application to separated and reattached flows. Numerical Heat Transfer 7 (1984) 59–75

    Google Scholar 

  6. Johnson, R. W.; Launder, B. E.: Discussion of: On the calculation of turbulent heat transport downstream from an abrupt pipe expansion. Numerical Heat Transfer 5 (1982) 493–496

    Google Scholar 

  7. Sindir, M. M.: Numerical study of turbulent flows in backward-facing step geometries: Comparison of four models of turbulence. Ph.D. Thesis, Mechanical Engineering Department, Univ. of Calif, Davis, 1982

  8. Sindir, M. M.: Effects of Expansion ratio on the calculation of parallel-walled backward-facing step flows: Comparison of four models of turbulence. ASME Paper No. 83-FE-10, 1983

  9. Sindir, M. M.: Calculation of deflected-walled backwardfacing step flows: Effects of angle of deflection on the performance of four models of turbulence. ASME Paper No. 83-FE-16, 1983

  10. Sindir, M. M.; Harsha, P. T.: Assessment of turbulence models for scramjet flowfields. NASA Contractor Report 3643, November 1982

  11. Humphrey, J. A. C.; Pourahmadi, F.: A generalized algebraic relation for predicting developing curved channel flow with ak-ɛ model of turbulence. 3rd symposium on turbulent shear flow. Univ. of Calif., Davis, 1983 (also Lawrence Berkeley Laboratory Report, LBL-12009)

  12. Humphrey, J. A. C.; Chang, S. M.: Turbulent flow in passage around a 180° bend: An experimental and numerical study. Univ. of Calif. Berkeley, Rep. FM-83-7, 1983

  13. Naot, D.; Rodi, W.: Calculation of secondary currents in channel flow. ASCE J. Hydraulics Division 108 (1982) 948–968

    Google Scholar 

  14. Rodi, W.: Turbulence models and their application in hydraulics — a state of the art review. Univ. Karlsruhe Report. SFB 80/T/127, Fed. Rep. Germany, 1978

  15. Washington, L.; Marks, W. M.: Heat transfer and pressure drop in rectangular air passages. Ind. and Eng. Chem. 29 (1937) 337–345

    Google Scholar 

  16. Corcoran, W. H.; Roudebush, B.; Sage, B. H.: Temperature gradients in turbulent gas streams: Preliminary studies. Chem. Eng. Prog. 43 (1947) 135–142

    Google Scholar 

  17. Corcoran, W. H.; Page, F., Jr., Schlinger, W. H.; Sage, B. H.: Temperature gradients in turbulent gas streams: Methods and apparatus for flow between parallel plates. Ind. and Eng. Chem. 44 (1952) 410–419

    Google Scholar 

  18. Page, F., Jr.; Corcoran, W. H.; Schlinger, W. G.; Sage, B. H.: Temperature gradients in turbulent gas streams: Temperature and velocity distributions in uniform flow between parallel plates. Ind. Eng. Chem. 44 (1952) 419–424

    Google Scholar 

  19. Page, F., Jr.; Schlinger, W. G.; Breaux, D. K.; Sage, B. H.: Temperature gradients in turbulent gas streams: Point values of eddy conductivity and viscosity in uniform flow between parallel plates. Ind. Eng. Chem. 44 (1952) 424–430

    Google Scholar 

  20. Laufer, J.: Investigation of turbulent flow in a two-dimensional channel. NACA Technical Note 2123, 1950

  21. Clark, J. A.: A study of incompressible turbulent boundary layers in channel flow. ASME J. Basic Eng. 90 (1968) 455–468

    Google Scholar 

  22. Hussain, A. K. M. F.; Reynolds, W. C.: Measurement of fully developed turbulent channel flow. ASME J. Fluids Eng. 97 (1975) 568–580

    Google Scholar 

  23. El Telbany, M. M. M.; Reynolds, A. J.: Velocity distributions in plane turbulent channel flows. J. Fluid Mech. 100 (1980) 1–29

    Google Scholar 

  24. El Telbany, M. M. M.; Reynolds, A. J.: Turbulence in plane channel flows. J. Fluid Mech. III (1981) 283–318

    Google Scholar 

  25. Lancet, R. T.: The effect of surface roughness on the convection heat-transfer coefficient for fully developed turbulent flow in ducts with uniform heat flux. ASME J. Heat Transfer 81 (1959) 168–174

    Google Scholar 

  26. Levy, S.; Fuller, R. A.; Niemi, R. O.: Heat transfer to water in thin rectangular channels. ASME J. Heat Transfer 81 (1959) 129–143

    Google Scholar 

  27. Sparrow, E. M.; Lloyd, J. R.; Hixon, C. W.: Experiments on turbulent heat transfer in an asymmetrically heated rectangular duct. ASME J. Heat Transfer 88 (1966) 170–174

    Google Scholar 

  28. Martinelli, R. C.: Heat transfer to molten metals. Trans. ASME 69 (1947) 947–960

    Google Scholar 

  29. Harrison, W. B.; Menke, J. R.: Heat transfer to liquid metals flowing in asymmetrically heated channels. Trans. ASME 71 (1949) 797–803

    Google Scholar 

  30. Seban, R. A.: Heat transfer to a fluid flowing turbulently between parallel walls with asymmetric wall temperatures. Trans. ASME 72 (1950) 789–795

    Google Scholar 

  31. Hatton, A. P.; Quarmby, A.: The effect of axially varying and unsymmetrical boundary conditions on heat transfer with turbulent flow between parallel plates. Int. J. Heat Mass Transfer 6 (1963) 903–914

    Google Scholar 

  32. Hatton, A. P.; Quarmby, A.; Grundy, I.: Further calculations on the heat transfer with turbulent flow between parallel plates. Int. J. Heat Mass Transfer 7 (1964) 817–823

    Google Scholar 

  33. Barrow, H.: Convection heat transfer coefficients for turbulent flow between parallel plates with unequal heat fluxes. Int. J. Heat Mass Transfer 1 (1961) 306–311

    Google Scholar 

  34. Barrow, H.: An analytical and experimental study of turbulent gas flow between two smooth parallel walls with unequal heat fluxes. Int. J. Heat Mass Transfer 5 (1962) 469–487

    Google Scholar 

  35. Barrow, H.; Lee, Y.: Heat transfer with unsymmetrical thermal boundary conditions. Int. J. Heat Mass Transfer 7 (1964) 580–582

    Google Scholar 

  36. Launder, B. E.; Sharma, B. I.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer 1 (1974) 131–138

    Google Scholar 

  37. Spalding, D. B.: Heat transfer from turbulent separated flows. J. Fluid Mechanics 27 (1967) 97–109

    Google Scholar 

  38. Pope, S. B.; Whitelaw, J. H.: The circulation of near-wake flows. J. Fluid Mech. 73 (1976) 9–32

    Google Scholar 

  39. Launder, B. E.; Spalding, D. B.: Lectures in mathematical models of turbulence. New York: Academic Press 1972

    Google Scholar 

  40. Gadgil, A.: On convective heat transfer in building energy analyses. Ph.D. Thesis, Department of Physics. Univ. of Calif., Berkeley, 1979 (also Lawrence Berkeley Laboratory Report, LBL-10900)

    Google Scholar 

  41. Patankar, S. V.; Spalding, D. B.: Heat and Mass Transfer in Boundary Layers. London: Morgan-Grampion 1967

    Google Scholar 

  42. Maurer, G. W.; Le Tourneau, B. W.: Friction factors for fully developed turbulent flow in ducts with and without heat transfer. ASME J. Basic Eng. 86 (1964) 627–636

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbari, H., Mertol, A., Gadgil, A. et al. Development of a turbulent near-wall temperature model and its application to channel flow. Wärme- und Stoffübertragung 20, 189–201 (1986). https://doi.org/10.1007/BF01303450

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01303450

Keywords

Navigation