Skip to main content
Log in

Numerical study of liquid film cooling along an inclined plate

Numerische Untersuchung der Flüssigfilm-Kühlung entalang einer geeigneten Platte

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

A numerical method of analyzing liquid film cooling along an inclined plate is presented. A marching procedure is employed for solution of the equations of mass, momentum, energy and concentration in the flow. Results for heat and mass transfer characteristics are presented for air-water system. The effects of the inclined angle φ, free-stream temperatureT , free-stream velocityu , and inlet film thickness δ on the heat and mass transfer along the gasliquid interface are examined in detail. Results show that an increase in free-stream temperature and velocity causes an increase in interfacial temperature while an increase in inclined angle and inlet film thickness causes a reduction in interfacial temperature. Additionally, the predicted results with the transport in the liquid film treated are contrasted with those with the transport in the liquid film untreated, showing that the assumption of an extremely thin film is inappropriate for a larger δ.

Zusammenfassung

Es wird eine numerische Methode zur Untersuchung der Flüssigfilm-Kühlung entlang einer geneigten Platte vorgestellt. Die Lösung der Bilanzgleichung für Masse, Impuls, Energie und Konzentration in der Strömung erfolgt mit Hilfe eines expliziten Verfahrens. Ergebnisse für das Wärme- und Stoffaustauschverhalten werden bezüglich des Systems Luft — Wasser mitgeteilt. Im einzelnen befaßt sich die Untersuchung mit der Ermittlung des Einflusses von Neigungswinkel φ, FreistrometemperaturT , Freistromgeschwindigkeitu und Eintrittsfilmdicke δ auf den Wärme- und Stoffübergang entlang der Gas-Flüssigkeitsgrenzfläche. Die Ergebnisse zeigen eine Abnahme der Grenzflächentemperatur bei ansteigender Freistromtemperatur und -geschwindigkeit und eine Erhöhung, wenn Neigungswinkel und Eintrittsfilmdicke zunehmen. Zusätzlich folgt aus den Berechnungen, daß bei größeren Filmdicken δ die Annahme eines extrem dünnen Films unter Vernachlässigun g der vollständigen Transportmechanismen im Flüssigkeitsfilm zu falschen Ergebnissen führt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ueda, T.; Tanaka, H.: Measurements of velocity, temperature and velocity fluctuation distributions in liquid films. Int. J. Multiphase Flow 2 (1975) 261–272

    Google Scholar 

  2. Wasden, F. K.; Dukler, A. E.: Insights into the hydrodynamics of free falling wavy films. AIChE J. 35 (1989) 187–195

    Google Scholar 

  3. Zabaras, G.; Dukler, A. E.; Moalem-Marson, D.: Vertical upwards cocurrent gas-liquid annular flow. AIChE J. 32 (1986) 829–843

    Google Scholar 

  4. Kinney, G. R.; Abramson, A. E.; Sloop, J. L.: Internal-liquid-film-cooling experiments with air-stream temperatures to 2000° F in 2- and 4-inch diameter horizontal tubes. NACA Report 1087 (1952)

  5. Cater, R. A.; L'Ecuyer, M.; Warner, C. F.: A fundamental investigation of the phenomena that characterize liquid-film cooling. NASA-CR-105906, January (1969)

  6. Schroppel, J.; Thiele, F.: On the calculation of momentum, heat and mass transfer in laminar and turbulent boundary layer along a vaporizing liquid film. Numer. Heat Transfer 6 (1983) 475–496

    Google Scholar 

  7. Chow, L. C.; Chung, J. N.: Evaporation of water into a laminar stream of air and superheated steam. Int. J. Heat Mass Transfer 26 (1983) 373–380

    Google Scholar 

  8. Chow, L. C.; Chung, J. N.: Water evaporation into a turbulent stream of air, humid air or superheated steam. 21st ASME/AIChE National Heat Transfer Conference, Seattle, WA, ASME Paper No. 83-HT-2 (1983)

  9. Haji, M.; Chow, L. C.: Experimental measurement of water evaporation rates into air and superheated steam. J. Heat Transfer 110 (1988) 237–242

    Google Scholar 

  10. Wu, C. H.; Davis, D. C.; Chung, J. N.; Chow, L. C.: Simulation of wedge-shaped product dehydration using mixtures of super-heated steam and air in laminar flow. Numer. Heat Transfer 11 (1987) 109–123

    Google Scholar 

  11. Lin, T. F.; Chang, C. J.; Yan, W. M.: Analysis of combined buoyancy effects of thermal and mass diffusion on laminar forced convection heat transfer in a vertical tube. J. Heat Transfer 110 (1988) 337–344

    Google Scholar 

  12. Yan, W. M.; Lin, T. F.: Effect of wetted wall on laminar mixed convection in a vertical channel. J. Thermophysics and Heat Transfer 3 (1988) 94–96

    Google Scholar 

  13. Yan, W. M.; Tsay, Y. L.; Lin, T. F.: Simultaneous heat and mass transfer in laminar mixed convection flows between vertical parallel plates with asymmetric heating. Int. J. Heat and Fluid Flow 10 (1989) 262–269

    Google Scholar 

  14. Chandra, V.; Savery, C. W.: Forced convection heat and mass transfer from a falling film to a laminar external boundary layer. Int. J. Heat Mass Transfer 17 (1974) 1549–1557

    Google Scholar 

  15. Shemmbharkar, T. R.; Pai, B. R.: Prediction of film cooling with a liquid coolant. Int. J. Heat Mass Transfer 29 (1986) 899–908

    Google Scholar 

  16. Baumann, W. W.; Thiele, F.: Heat and mass transfer in evaporating two-component liquid film flow. Int. J. Heat Mass Transfer 33 (1990) 267–273

    Google Scholar 

  17. Yan, W. M.; Lin, T. F.: Combined heat and mass transfer in natural convection between vertical parallel plates with film evaporation. Int. J. Heat Mass Transfer 33 (1990) 529–541

    Google Scholar 

  18. Eckert, E. R. G.; Drake, R. M. Jr.: Analysis of heat and mass transfer. New York: McGraw-Hill 1972

    Google Scholar 

  19. Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K.: The properties of gases and liquids. New York: McGraw-Hill 1981

    Google Scholar 

  20. Bird, R. B.; Steward, W. E.; Lightwood, E. N.: Transport phenomena. New York: Wiley 1960

    Google Scholar 

  21. Fujii, T.; Kato, Y.; Mihara, K.: Expressions of transport and thermodynamic properties of air, steam and water. Sei San Ka Gaku Ken Kyu Jo., Report No. 66, Kyu Shu Dai Gaku, Kyu Shu, Japan (1977)

  22. Anderson, D. A.; Tannehill, J. C.; Pletcher, R. H.: Computational fluid mechanics and heat transfer. New York: Hemisphere/McGraw-Hill 1984

    Google Scholar 

  23. Patankar, S. V.: Numerical heat transfer and fluid flow. New York: Hemisphere/McGraw-Hill 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, WM., Soong, CY. Numerical study of liquid film cooling along an inclined plate. Warme - Und Stoffubertragung 28, 233–241 (1993). https://doi.org/10.1007/BF01541194

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01541194

Keywords

Navigation