Skip to main content
Log in

Numerical analysis of transient two phase flow in heat pipe

Numerische Untersuchung der nichtstationären Zweiphasen-Strömung in Wärmerohren

  • Originals
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents numerical simulation of the physical phenomena in heat pipe. The vapour dynamics of working fluid is considered in the numerical analysis of the heat pipe. A two-phase analysis is carried out for the heat pipe. The compressible flow equations for vapour-phase interaction with water particle phase are solved by a finite volume technique. A three stage Runge-Kutta time-stepping method is employed to solve vapour dynamics. Damping term is added to stablize the numerical scheme. An example is worked out to study the two phase flow in the heat pipe.

Zusammenfassung

Die Arbeit bezieht sich auf die numerische Simulation der physikalischen Phänomene in Wärmerohren, wobei insbesondere die Verdampfungsdynamik des Arbeitsmediums in einer Zweiphasen-Analyse untersucht wird. Mit Hilfe eines zeitabhängigen Differenzenverfahrens lassen sich die, die Wechselwirkung zwischen Dampfphase und Wasserpartikeln beschreibenden Gleichungen für den kompressiblen Fall lösen. Mittels eines dreistufigen Runge/Kutta-Verfahrens wird die Dampfdynamik analysiert, wobei durch Einführung eines Dämpfungsterms eine Stabilisierung des numerischen Verfahrens bewirkt wird. Ein praktisches Berechnungsbeispiel schließt die Untersuchung ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C v :

specific heat at constant volume

D 0 :

outer diameter of heat pipe

D i :

inner diameter of heat pipe

e :

total energy

f :

friction coefficient

h :

convective heat transfer coefficient

h fg :

latent heat of vaporisation

K :

thermal conductivity

l c :

length of condenser

p :

pressure

q :

energy flux

r :

vapour space radius

Re :

Reynolds number

T :

temperature

U,F,H :

vectors in vapour formulation

u :

vapour velocity

x :

axial coordinate

μ :

vapour viscosity

ρ :

vapour density

ω w :

shear stress

References

  1. Beam, J.E.: Transient heat pipe analysis. AIAA paper 85-0936, AIAA 20th Thermophysics Conf. (1985)

  2. Bowman, J.; Sweeten, R.W.: Numerical heat pipe modelling. AIAA paper 89-1705 (1989)

  3. Brown, J.E.;Winn, R.C.;Martin, H.L.: Transient heat pipe modelling, A quasisteady, incompressible vapour model. J. Thermophys. Heat Transfer 6 (1992) 571–574

    Google Scholar 

  4. Hatta, N.;Fujimoto, H.;Takuda, H.: Numerical analysis of flow pattern of impinging liquid sprays in a cold model for cooling a hot flat plate. Appl. Sci. Res. 50 (1983) 129–147

    Google Scholar 

  5. Jameson, A.; Schmidt, W.; Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes. AIAA paper 81-1259 (1981)

  6. Dunn, P.D.;Reay, D.A.: Heat Pipes. Pergmon Press, N.Y. (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, R.C., Jayachandran, T. Numerical analysis of transient two phase flow in heat pipe. Heat and Mass Transfer 31, 383–386 (1996). https://doi.org/10.1007/BF02172583

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172583

Keywords

Navigation