Skip to main content
Log in

A method for determining the dielectric constant and the conductivity of membrane-bounded particles of biological relevance

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

Abstract

Numerical assessment is made regarding Pauly and Schwan's theory which describes the dielectric behaviour of a suspension of “shell spheres” as a model of biological membrane-bounded particles. The results indicate that approximate expressions of the theory may give rise to serious errors when applied to particles smaller than about 1 Μm in diameter. With a view to performing analysis according to a general expression of the theory, some of the characteristic responses of dielectric parameters upon changes in phase parameters are examined with particular reference to some numerical ranges of biological interest. On this basis a simplified and systematic procedure is proposed for estimating the phase parameters of particles whose shell phase can be regarded as non-conductive. As the application of the procedure proposed, a set of dielectric data of a synaptosome suspension is analyzed, so that the following three phase parameters are successfully determined: membrane capacitance (or shell phase dielectric constant), internal phase conductivity and internal phase dielectric constant. Some limitations of the procedure are discussed for the cases of conducting shells and small particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cole, K. S.: Membranes, ions and impulses, part 1. Berkeley-Los Angeles, California: University of California Press 1968

    Google Scholar 

  2. Hanai, T.: Electrical properties of emulsions. In: Emulsion science, chap. 5 (ed. P. Sherman). London-New York: Academic Press 1968

    Google Scholar 

  3. Irimajiri, A., Hanai, T., Inouye, A.: Dielectric properties of synaptosomes isolated from rat brain cortex. Biophys. Struct. Mechanism 1, 273–283 (1975)

    Google Scholar 

  4. Jain, M. K.: The bimolecular lipid membrane: A system, p. 91. New York-London: Van Nostrand Reinhold Company 1972

    Google Scholar 

  5. Pauly, H.: über die elektrische KapazitÄt der Zellmembran und die LeitfÄhigkeit des Zytoplasmas von Ehrlich-Aszitestumorzellen. Biophysik 1, 143–153 (1963)

    Google Scholar 

  6. Pauly, H., Packer, L.: The relationship of internal conductance and membrane capacity to mitochondrial volume. J. biophys. biochem. Cytol. 7, 603–612 (1960)

    Google Scholar 

  7. Pauly, H., Packer, L., Schwan, H. P.: Electrical properties of mitochondrial membranes. J. biophys. biochem. Cytol. 7, 589–601 (1960)

    Google Scholar 

  8. Pauly, H., Schwan, H. P.: über die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale. Z. Naturforsch. 14b, 125–131 (1959)

    Google Scholar 

  9. Pauly, H., Schwan, H. P.: Dielectric properties and ion mobility in erythrocytes. Biophys. J. 6, 621–639 (1966)

    Google Scholar 

  10. Redwood, W. R., Takashima, S., Schwan, H. P., Thompson, T. E.: Dielectric studies on homogenous phosphatidylcholine vesicles. Biochim. biophys. Acta (Amst.) 255, 557–566 (1972)

    Google Scholar 

  11. Schwan, H. P.: Electrical properties of tissue and cell suspensions. In: Advanc. biol. med. Phys., vol. 5 (eds. J. H. Lawrence, C. A. Tobias), p. 147. New York: Academic Press 1957

    Google Scholar 

  12. Schwan, H. P., Cole, K. S.: Alternating current admittance of cells and tissues. In: Med. Phys., vol. 3 (ed. O. Glasser), p. 52. Chicago: The Year Book Pubs. 1960

    Google Scholar 

  13. Schwan, H. P., Morowitz, H. J.: Electrical properties of the membranes of the pleuro-pneumonia-like organism A 5969. Biophys. J. 2, 395–407 (1962)

    Google Scholar 

  14. Schwan, H. P., Takashima, S., Miyamoto, V. K., Stoechenius, W.: Electrical properties of phospholipid vesicles. Biophys. J. 10, 1102–1119 (1970)

    Google Scholar 

  15. Sjöstrand, F. S.: Ultrastructure and function of cellular membranes. In: The membranes (eds. A. J. Dalton, F. Haguenau), pp. 151–210. New York-London: Academic Press 1968

    Google Scholar 

  16. Sugiura, Y., Koga, S., Akabori, H.: Dielectric behavior of yeast cells in suspension. J. gen. appl. Microbiol. 10, 63–174 (1964)

    Google Scholar 

  17. Yamamoto, T.: On the thickness of the unit membrane. J. Cell Biol. 17, 413–421 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanai, T., Koizumi, N. & Irimajiri, A. A method for determining the dielectric constant and the conductivity of membrane-bounded particles of biological relevance. Biophys. Struct. Mechanism 1, 285–294 (1975). https://doi.org/10.1007/BF00537642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00537642

Key words

Navigation