Skip to main content
Log in

Padé-Laplace method for the analysis of time-resolved fluorescence decay curves

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The interpretation of fluorescence intensity decay times in terms of protein structure and dynamics depends on the accuracy and sensitivity of the methods used for data analysis. The are many methods available for the analysis of fluorescence decay data, but justification for choosing any one of them is unclear. In this paper we generalize the recently proposed Padé-Laplace method [45] to include deconvolution with respect to the instrument response function. In this form the method can be readily applied to the analysis of time-correlated single photon counting data. By extensive simulations we have shown that the Padé-Laplace method provides more accurate results than the standard least squares method with iterative reconvolution under the condition of closely spaced lifetimes. The application of the Padé-Laplace method to several experimental data sets yielded results consistent with those obtained by use of the least squares analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcala JR, Gratton E, Prendergast FG (1987) Interpretation of fluorescence decays in proteins using continuous lifetime distributions. Biophys J 51: 925–936

    Google Scholar 

  • Ameloot M, Hendrickx H (1983) Extension for the performance of Laplace deconvolution in the analysis of fluorescence decay curves. Biophys J 44: 27–38

    Google Scholar 

  • Ameloot M, Beechem JM, Brand L (1986) Simultaneous analysis of multiple fluorescence decay curves by Laplace transforms. Deconvolution with reference or excitation profiles. Biophys Chem 23: 155–171

    Google Scholar 

  • Andre JC, Vincent LM, O'Connor D, Ware WR (1979) Applications of fast fourier transform to deconvolution in single photon counting. J Phys Chem 83: 2285–2293

    Google Scholar 

  • Aubard J, Levoir P, Denis A, Claverie P (1987) Direct analysis of chemical relaxation signals by a method based on the combination of Laplace transform and Padé approximants. Comput Chem 11: 163–178

    Google Scholar 

  • Bajzer Z, Myers AC, Sedarous SS, Prendergast FG (1989a) Padé-Laplace method for the analysis of fluorescence intensity decay. Biophys J 56: 79–93

    Google Scholar 

  • Bajzer Z, Myers AC, Sharp JC, Hedstrom JF, Prendergast FG (1989b) Padé-Laplace method for the analysis of time-resolved fluorescence decay curves. Biophys J 55:190a

    Google Scholar 

  • Baker GA Jr (1965) The theory and application of Padé approximant method. Adv Theor Phys 11: 58

    Google Scholar 

  • Boens N, Malliaris A, Van der Auweraer M, Luo H, De Schryver FC (1988) Simultaneous analysis of single-photon timing data with a reference method: application to a Poisson distribution of decay rates. Chem Phys 121: 199–209

    Google Scholar 

  • Boens N, Janssens LD, De Schryver FC (1989) Simultaneous analysis of single-photon timing data for the one-step determination of activation energies, frequency factors and quenching rate constants. Application to tryptophan photophysics. Biophys Chem 33: 77–90

    Google Scholar 

  • Bronshtein IN, Semendyayev KA (1985) Handbook of mathematics. Van Nostrand, New York

    Google Scholar 

  • Catterall R, Duddell DA (1983) Beyond chi-square: evaluation of parametric models used in the analysis of data from fluorescence decay experiments. NATO ASI (Adv Sci Inst) Ser A Life Sci 69: 173–195

    Google Scholar 

  • Demas JN, Adamson AW (1971) Evaluation of photoluminiscence lifetimes. J Phys Chem 75: 2463–2466

    Google Scholar 

  • Eisenfeld J (1983) Remarks on the method of moments for fluorescence decay analysis NATO ASI (Adv Sci Inst) Ser A. Life Sci 69: 223–231

    Google Scholar 

  • Eisenfeld J, Ford CC (1979) A systems-theory approach to the analysis of multiexponential fluorescence decay. Biophys J 26: 73–84

    Google Scholar 

  • Gafni A (1983) Analysis of pulse fluorometry data by Laplace transforms NATO ASI (Adv Sci Inst) Ser A. Life Sci 69: 259–270

    Google Scholar 

  • Gafni A, Modlin RL, Brand L (1975) Analysis of fluorescence decay curves by means of the Laplace transformation Biophys J 15: 263–280

    Google Scholar 

  • Gauduchon P, Wahl P (1978) Pulse fluorimetry of tyrosil peptides Biophys Chem 8: 87–104

    Google Scholar 

  • Grinvald A, Steinberg IZ (1974) On the analysis of fluorescence decay kinetics by the method of least squares. Anal Biochem 59: 583–598

    Google Scholar 

  • Hall P, Selinger BK (1981) Better estimates of exponential decay parameters J Phys Chem 85: 2941–2946

    Google Scholar 

  • Hedstrom J, Sedarous SS, Prendergast FG (1988) Measurements of fluorescence lifetimes by use of a hybrid time-correlated and multifrequency phase fluorometer. Biochemistry 27: 6203–6208

    Google Scholar 

  • Isenberg I (1983) Robust estimation in pulse-fluorometry, a study of the method of moments and least squares. Biophys J 43: 141–148

    Google Scholar 

  • Isenberg I, Dyson RD (1969) The analysis of fluorescence decay by a method of moments. Biophys J 9: 1337–1350

    Google Scholar 

  • Jezequel JY, Bouchy M, Andre JC (1982) Estimation of fast fluorescence lifetimes with single photon counting apparatus and the phase plane method. Anal Chem 54: 2199–2204

    Google Scholar 

  • Kempthorn O, Folks L (1971) Probability statistics and data analysis Iowa State University Press, Ames, IA

    Google Scholar 

  • Knutson JR, Beechem JM, Brand J (1983) Simultaneous analysis of multiple fluorescence decays curves: a global approach. Chem Phys Lett 102: 501–507

    Google Scholar 

  • Lanczos C (1956) Applied analysis. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Libertini LJ, Small EW (1984) F/F deconvolution of fluorescence data. Anal Biochem 138: 314–318

    Google Scholar 

  • Livesey AK, Brochon JC (1987) Analyzing the distribution of decay constants in pulse-fluorometry using the maximum entropy method. Biophys J 52: 693–706

    Google Scholar 

  • Matheson (1989) The non-equivalence of Padé-Laplace and non-linear least squares data fitting: A Padé-Laplace bias towards slower processes. Comput Chem 13: 385–386

    Google Scholar 

  • McKinnon AE, Szabo AG, Miller DR (1977) The deconvolution of Photoluminiscence data. J Phys Chem 81: 1564–1570

    Google Scholar 

  • Mérola F, Rigler R, Holmgren A, Brochon JC (1989) Picosecond tryptophan fluorescence of thioredoxin: Evidence for discrete species in slow exchange. Biochemistry 28: 3383–3398

    Google Scholar 

  • O'Connor DV, Phillips D (1984) Time-correlated single photon counting, Academic Press, New York

    Google Scholar 

  • O'Connor, DV, Ware WR, Andre JC (1979) The deconvolution of Photoluminiscence data. J Phys Chem 83: 1333–1343

    CAS  PubMed  Google Scholar 

  • Press WH, Flannery BP, Tenkolsky SA, Vetterling WT (1986) Numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

  • Scott TW, Campbell BF, Cone RL, Friedman JM (1989) Linear narrowing and site selectivity from proteins and glasses: cryogenic studies of conformational disorder and dynamics. Chem Phys 131: 63–79

    Google Scholar 

  • Sellinger BK, Harris CM (1983) A critical appraisal of analytical methods. NATO ASI (Adv Sci Inst) Ser A Life Sci 69: 155–168

    Google Scholar 

  • Small EW Libertini LJ, Brown DW Small JR (1989) Extensions of the method of moments for deconvolution of experimental data. RE (ed) Fluorescence detection III. In: Menzel, SPIE Proceedings 1054, Bellingham, Wash

  • Szabo AG, Bramal L (1983) Modulating functions — a deconvolution method. NATO ASI (Adv Sci Inst) Ser A Life Sci 69: 271–283

    Google Scholar 

  • Valeur B, Moirez J (1973) Analyse des courbes de décroissance multiexponentielles pa la méthode des fonctions modulatrices — application a la fluorescence. J Chim Phys 70: 500–506

    Google Scholar 

  • Vincent M, Brochon JC, Merola F, Jordi W, Gallay J (1988) Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by time-resolved fluorescence of the single tryptophan residue Trp-59. Biochemistry 27: 8752–8761

    Google Scholar 

  • Wijnaendts van Resandt RW, Vogel RH, Provencher SW (1982) Double beam fluorescence lifetime spectrometer with subnanosecond resolution: application to aqueos tryptophan. Rev Sci Instrum 53: 1392–1397

    Google Scholar 

  • Wild UP (1983) Fourier transform analysis. NATO ASI (Adv Sci Inst) Ser A Life Sci 69: 239–257

    Google Scholar 

  • Yeramian E (1986) Etude expérimentale et théorique de récepteurs de neuromédiateurs et déloppement de methodologies pour l'analyse de signaux. PhD Thesis. Ecole Centrale des Arts et Manufactures

  • Yeramian E, Claverie P (1987) Analysis of multiexponential functions without hypothesis as to the number of components. Nature 326: 169–174

    Google Scholar 

  • Zucker M, Szabo AG, Bramal L, Krajcarski DT Selinger B (1985) Delta function convolution method (DFCM) for fluorescence decay experiments. Rev Sci Instrum 56: 14–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: F. G. Prendergast

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajzer, Z., Sharp, J.C., Sedarous, S.S. et al. Padé-Laplace method for the analysis of time-resolved fluorescence decay curves. Eur Biophys J 18, 101–115 (1990). https://doi.org/10.1007/BF00183269

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00183269

Key words

Navigation