Skip to main content
Log in

Hydrotalcite-like solid solutions with variable SO 2−4 and CO 2−3 contents at 50° C

An X-ray diffraction and raman spectrometry study

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Hydrotalcite-like solid solutions have been synthesized by coprecipitation in basic solutions with variable SO 2−4 /CO 2−3 ratios. Chemical determination of CO 2−3 in the interlayer was impossible because of the presence of minor hydromagnesite. SO 2−4 was determined both by chemical analysis and X-ray photoelectron spectroscopy (XPS), the two methods giving similar results. A Raman spectrometry gave additional data on the SO 2−4 /CO 2−3 ratio. Then, the stoichiometry of the anionic interlayers, X s , X c , and X OH were determined, and the influence of X s on the c′ parameter (increasing from c′=7.97 Å to c′=8.63 Å between X s =0 and X s =1) was characterized. In addition, a partitioning curve of SO 2−4 and CO 2−3 between aqueous solutions and hydrotalcite-like compounds was established. Its general shape strongly suggests a miscibility gap between a sulfate-rich end and a carbonate-rich solid solution (maximum SO 2−4 /CO 2−3 about 0.2). This result explains why most of the hydrotalcites synthesized during experimental alteration of basaltic glasses by sea-water (a sulfate-rich solution) are CO 2−3 -rich solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allman R, Jepsen HP (1969) Die Struktur des Hydrotalkits. Neues Jahrb Mineral Monatsh 12:544–551

    Google Scholar 

  • Bish DL (1980) Anion-exchange in takovite: application to other hydroxide minerals. Bull Miner 103:170–175

    Google Scholar 

  • Brindley GW, Bish DL (1976) Green rust: a pyroaurite type structure. Nature 263, 5575:353

    Google Scholar 

  • Brindley GW, Kikkawa S (1979) A crystal-chemical study of Mg, Al and Ni, Al hydroxy-perclorates and hydroxy-carbonates. Am Mineral 64:836–843

    Google Scholar 

  • Brindley GW, Kikkawa S (1980) Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite. Clays Clay Miner 28, 2:87–91

    Google Scholar 

  • Brown G, Gastuche MC (1967) Mixed magnesium-aluminium hydroxides: structure and structural chemistry of synthetic hydroxycarbonates and related minerals and compounds. Clay Mineral 7:193–201

    Google Scholar 

  • Crovisier JL (1985) Étude de la dissolution d'un verre basaltique tholeïtique dans l'eau de mer: approche expérimentale et thermodynamique. PhD Thesis, Strasbourg (France)

  • Frondel C (1941) Constitution and polymorphism of the pyroaurite and sjögrenite groups. Am Miner 26:295–315

    Google Scholar 

  • Gastuche MC, Brown B, Mortland MM (1967) Mixed magnesium-aluminium hydroxides. Clay Miner 7:177–201

    Google Scholar 

  • Hashi S, Kikkawa S, Koizumi M (1983) Preparation and properties of pyroaurite-like hydroxy-minerals. Clays Clay Miner 31, 2:152–154

    Google Scholar 

  • Hernandez-Moreno MJ, Ulibarri MA, Rendon JL, Serna CJ (1985) IR characteristics of hydrotalcite-like compounds. Phys Chem Minerals 12:34–38

    Google Scholar 

  • Huneke JT, Cramer RE, Alvarez R, El-Swaify SA (1980) The identification of gibbsite and bayerite by Laser Raman Spectroscopy. Soil Sci Soc Am Proc 44:131–134

    Google Scholar 

  • Kester DA, Duedall JW, Conners DM, Pytkorvicz RM (1967) Preparation of artificial seawater. J Oceanography 12:176–178

    Google Scholar 

  • Kikkawa S, Koizumi M (1982) Ferrocyanide anion bearing Mg-Al hydroxide. Mater Res Bull 17:191–198

    Google Scholar 

  • Le Bail C (1985) Étude cristallochimique de composés du groupe Mg1−xAlx(OH)2A n−x/n/ ·mH2O avec A=(OH, CO 3/2 , NO 3 , SO 2−4 ). Apport de différentes méthodes de caractérisation des matériaux minéraux. DEA, Orléans (France)

  • Marino O, Mascolo G (1981) Thermal stability of Mg-Al double hydroxides variously anion exchanged. Symp Thermal Analysis, Aberdeen

  • Mascolo G, Marino O (1980) A new synthesis and characterization of Mg-Al hydroxides. Mineral Mag 43:619–621

    Google Scholar 

  • Miyata S (1980) Physico-chemical properties of synthetic hydrotalcite in relation to composition. Clays Clay Miner 28:50–56

    Google Scholar 

  • Miyata S (1983) Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner 31, 4:305–311

    Google Scholar 

  • Szymanski HA (1967) Raman spectroscopy: theory and practice. Plenum Press, New-York

    Google Scholar 

  • Taylor HFW (1973) Crystal structures of some double hydroxide minerals. Mineral Mag 39, 304:377–389

    Google Scholar 

  • Thomassin JH (1984) Étude expérimentale de l'altération des verres silicatés dans l'eau douce et en milieu océanique; apport des méthodes d'analyse de surface des solides. PhD Thesis, Orléans (France)

  • Thomassin JH, Touray JC (1982) L'hydrotalcite, un hydroxycarbonate transitoire précocement formé lors de l'interaction verre basaltique-eau de mer. Bull Mineral 105:312–319

    Google Scholar 

  • Touray JC, Thomassin JH (1984) Bilans et mécanismes d'interaction des verres basaltiques et de l'eau de mer en conditions hydrothermales. Revisita della Stazione Sperimentale del Vetro, Murano 14:111–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bail, C., Thomassin, JH. & Touray, JC. Hydrotalcite-like solid solutions with variable SO 2−4 and CO 2−3 contents at 50° C. Phys Chem Minerals 14, 377–382 (1987). https://doi.org/10.1007/BF00309814

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309814

Keywords

Navigation