Skip to main content
Log in

Computer simulation of crystal structures

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

It is impossible to calculate from first principles the details of crystal structures. However, it is possible to rely on information which is certain, namely on interatomic distances, and calculate the details of a crystal structure based on these. Individual distances between atoms can be predicted accurately if one considers the coordination numbers of anions and cations, the extended electrostatic valence rule, and the effects of shared edges between different coordination polyhedra. The predicted interatomic distances are used as observations in a distance least squares refinement in which the positional parameters and the cell edges are adjusted until the calculated interatomic distances correspond as closely as possible to the predicted distances. The topology of the simulated structure has to be known or assumed. Appropriate weighting can facilitate proper modelling. Applications include: a) solution of pseudosymmetric structures; b) preliminary refinement of trial structures; c) geometric refinement without X-ray intensities; d) comparison of hypothetical structures with observed polymorphs of the same compositions; e) simulation of temperature dependence of structures; f) simulation of pressure dependence; g) calculation of structures isomorphous to known structures; h) calculation of thermal ellipsoids; i) calculation of local environments deviating from the overall symmetry of a structure; j) testing of hypotheses about the behavior of structures at varying conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous: Geometric refinement of crystal structures. Nature 233, 447 (1971)

  • Baerlocher, C., Barrer, R.M.: The crystal structure of synthetic zeolite F. Z. Kristallogr. 140, 10–26 (1974)

    Google Scholar 

  • Baerlocher, C., Meier, W.M.: Synthese und Kristallstruktur von Tetramethyl Ammonium-Gismondin. Helv. Chim. Acta, 53, 1285–1293 (1970)

    Google Scholar 

  • Barrer, R.M., Meier, W.M.: Structural and ion sieve properties of a synthetic crystalline exchanger. Trans. Farad. Soc. 54, 1074–1085 (1958)

    Google Scholar 

  • Barrer, R.M., Villiger, H.: The crystal structure of the synthetic zeolite L. Z. Kristallogr. 128, 352–370 (1969)

    Google Scholar 

  • Baur, W.H.: Bond length variation and distorted coordination polyhedra in inorganic crystals. Trans. Amer. Crystallogr. Ass. 6, 129–155 (1970)

    Google Scholar 

  • Baur, W.H.: The prediction of bond length variations in silicon-oxygen bonds. Amer. Mineral. 56, 1573–1599 (1971 a)

    Google Scholar 

  • Baur, W.H.: Geometric refinement of the crystal structure of β-Mg2SiO4. Nature Physical Science, 233, 135–137 (1971 b)

    Google Scholar 

  • Baur, W.H.: Computer simulated crystal structures of observed and hypothetical Mg2SiO4 polymorphs of low and high density. Amer. Mineral. 57, 709–731 (1972)

    Google Scholar 

  • Baur, W.H.: Reconstruction of local atomic environments in the disordered hydrogen-bonded crystal structures of para-electric ammonium dihydrogen phosphate and potassium dihydrogen phosphate. Acta Cryst. B29, 2726–2731 (1973)

    Google Scholar 

  • Baur, W.H., Tillmanns, E.: Salt hydrates. X. The crystal structure determinations of heptasodium fluoride bisphosphate 19-hydrate and heptasodium fluoride bisarsenate 19-hydrate and the computer simulation of the isomorphous vanadate salt. Acta Cryst. B30, 2218–2224 (1974)

    Google Scholar 

  • Bragg, W.L.: The arrangement of atoms in crystals. Phil. Mag. [6], 40, 169–189 (1920)

    Google Scholar 

  • Bragg, W.L., Brown, G.B.: Die Struktur des Olivins. Z. Kristallogr. 63, 528–556 (1926)

    Google Scholar 

  • Brown, I.D., Shannon, R.D.: Empirical bond-strength-bond-length curves for oxides. Acta Crystallogr. A29, 266–282 (1973)

    Google Scholar 

  • Cameron, M., Sueno, S., Prewitt, C.T., Papike, J.J.: High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene and ureyite. Amer. Mineral. 58, 594–618 (1973)

    Google Scholar 

  • Dempsey, M.J., Strens, R.G.J.: Modelling crystal structures. In: Physics and Chemistry of Minerals and Rocks, Strens, R.G.J. (ed.). London: Wiley 1976

    Google Scholar 

  • Dollase, W.A.: The crystal structure at 220°C of orthorhombic high tridymite from the Steinbach meteorite. Acta Crystallogr. 23, 617–623 (1967)

    Google Scholar 

  • Dollase, W.A., Baur, W.H.: The superstructure of meteoritic low tridymite solved by computer simulation. Amer. Mineral. 61, 971–978 (1976)

    Google Scholar 

  • Engel, G., Pretzsch, J., Gramlich, V., Baur, W.H.: The crystal structure of hydrothermally grown manganese chlorpatite, Mn5(PO4)3Cl0.9(OH)0.1. Acta Crystallogr. B31, 1854–1860 (1975)

    Google Scholar 

  • Gibbs, R.E.: The polymorphism of silicon dioxide and the structure of tridymite. Proc. Roy. Soc. A113, 351–368 (1926)

    Google Scholar 

  • Gramlich, V.: Untersuchung und Verfeinerung pseudosymmetrischer Strukturen. Dissertation, ETH, Zürich (1971)

    Google Scholar 

  • Gramlich, V., Meier, W.M.: The crystal structure of hydrated NaA: a detailed refinement of a pseudosymmetric zeolite structure. Z. Kristallogr. 133, 134–149 (1971)

    Google Scholar 

  • Guggenheim, S., Bailey, S.W.: Refinement of the margarite structure in subgroup symmetry. Amer. Mineral. 60, 1023–1029 (1975)

    Google Scholar 

  • Guigas, B.: Verfeinerung von Kristallstrukturen mit dem Distance Least Squares-Verfahren: Behandlung von Konvergenzfragen und kristallographische Anwendungen. Dissertation, Universität Karlsruhe (1975)

  • Hagman, L.-O., Kierkegaard, P.: Note on the structures of MIVP2O7 (MIV = Ge, Zr, and V). Acta Chem. Scand. 23, 327–328 (1969)

    Google Scholar 

  • Hoffmann, W.: Gitterkonstanten und Raumgruppe von Tridymit bei 20°C. Naturwiss. 54, 114 (1967)

    Google Scholar 

  • Katz, L., Megaw, H.D.: The structure of potassium niobate at room temperature: the solution of a pseudosymmetric structure by Fourier methods. Acta Cryst. 22, 639–648 (1967)

    Google Scholar 

  • Khan, A.A.: Computer simulation of the thermal expansion behavior of some non-cubic crystals: forsterite, anhydrite and scheelite. Acta Crystallogr. A32, 11–16 (1976)

    Google Scholar 

  • Khan, A.A., Baur, W.H.: Reinement of the crystal structures of ammonium dihydrogren phosphate and ammonium dihydrogen aresenate. Acta Crystallogr. B29, 2721–2726 (1973)

    Google Scholar 

  • Kimball, M.R., Megaw, H.D.: Interim report on the crystal structure of buddingtonite. In: The Feldspars, McKenzie, W.S., Zussman, J. (ed.). Manchester: Manchester Univ. Press 1974

    Google Scholar 

  • Levi, G.R., Peyronel, G.: Struttura cristallografica del gruppo isomorfo (Si4+, Ti4+, Zr4+, Sa4+, Hf4+) P2O7. Z. Kristallogr. 92, 190–209 (1935)

    Google Scholar 

  • Maksimova, N.V., Ilyukhin, V.V., Belov, N.V.: Crystal structure of sorensenite. Sov. Phys. Dokl. 18, 681–682 (1974)

    Google Scholar 

  • Meagher, E.P.: The crystal structures of pyrope and grossularite at elevated temperatures. Amer. Mineral. 60, 218–228 (1975)

    Google Scholar 

  • Megaw, H.D.: The thermal expansion of crystals in relation to their structure. Z. Kristallogr. 100, 58–76 (1938)

    Google Scholar 

  • Megaw, H.D.: Crystal structures: A working approach. Philadelphia, Pennsylvania: W.B. Saunders Co. 1973

    Google Scholar 

  • Meier, W.M.: Symmetry aspects of zeolite frameworks. Adv. Chem. Series 121, 39–51 (1973)

    Google Scholar 

  • Meier, W.M., Villiger, H.: Die Methode der Abstandsverfeinerung zur Bestimmung der Atomkoordinaten idealisierter Gerüststrukturen. Z. Kristallogr. 129, 411–423 (1969)

    Google Scholar 

  • Metcalf-Johansen, J., Hazell, R.G.: The crystal structure of sorensenite, Na4SnBe2(Si3O9)2·2H2O. Acta Crystallogr. B32, 2553–2556 (1976)

    Google Scholar 

  • Moore, P.B., Smith, J.V.: Crystal structure of β-Mg2SiO4: crystal chemical and geophysical implications. Phys. Earth. Planet. Interiors, 3, 166–177 (1970)

    Google Scholar 

  • Morimoto, N., Akomoto, S., Koto, K., Tokonami, M.: Crystal structures of high pressure modifications of Mn2GeO4 and Co2SiO4. Phys. Earth Planet. Interiors, 3, 161–165 (1970)

    Google Scholar 

  • Ohashi, Y., Finger, L.W.: Thermal vibration elliposids and equipotential surfaces at the cation sites in olivines and clinopyroxenes. Year Book Carnegie Inst. 72, 547–551 (1973)

    Google Scholar 

  • Pauling, L.: The Nature of the Chemical Bond (3rd ed.), p. 547. Ithaca, N.Y.: Cornell Univ. Press 1960

    Google Scholar 

  • Pauling, L., Sturdivant, J.H.: The crystal structure of brookite. Z. Kristallogr. 68, 239–256 (1928)

    Google Scholar 

  • Reed, T.B., Breck, D.W.: Crystalline zeolites. II. Crystal structure of synthetic zeolite type A. J. Amer. Chem. Soc. 78, 5972–5977 (1956)

    Google Scholar 

  • Reid, A.F., Ringwood, A.E.: The crystal chemistry of dense M3O4 polymorphs: high pressure Ca2GeO4 of K2NiF4 structure type. J. Sol. State Chem. 1, 557–565 (1970)

    Google Scholar 

  • Ringwood, A.E.: Phase transformations and the constitution of the mantle. Phys. Earth Planet. Interiors, 3, 109–155 (1970)

    Google Scholar 

  • Seff, K., Shoemaker, D.P.: The structure of zeolite sorption complexes. I. The structure of dehydrated zeolite 5A and its iodine sorption complex. Acta Crystallogr. 22, 162–170 (1967)

    Google Scholar 

  • Shannon, R.D., Calvo, C.: Refinement of the crystal structures of low temperature Li3VO4 and analysis of mean bond lengths in phosphates, arsenates, and vanadates. J. Sol. State Chem. 6, 538–549 (1973)

    Google Scholar 

  • Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751–767 (1976)

    Google Scholar 

  • Shoemaker, C.B., Shoemaker, D.P.: The crystal structure of the M phase, Nb—Ni—Al. Acta Crystallogr. 23, 231–238 (1967)

    Google Scholar 

  • Sieber, W., Meier, W.M.: Formation and properties of losod, a new sodium zeolite. Helv. Chim. Acta, 57, 1533–1549 (1974)

    Google Scholar 

  • Siebert, H.: Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie. Berlin, Heidelberg, New York: Springer 1966

    Google Scholar 

  • Tillmanns, E.: Refinement of barium dititanate. Acta Crystallogr. B30, 2894–2896 (1974)

    Google Scholar 

  • Tillmanns, E., Gebert, W., Baur, W.H.: Computer simulation of crystal structures applied to the solution of the superstructure of cubic silicondiphosphate. J. Sol. State Chem. 7, 69–84 (1973)

    Google Scholar 

  • Villiger, H.: DLS-manual. Zürich: ETH 1969

    Google Scholar 

  • Vincent, H., Bertaut, E.F., Baur, W.H., Shannon, R.D.: Polyhedral deformations in olivine-type compounds and the crystal structures of Fe2SiS4 and Fe2GeS4. Acta Crystallogr. B32, 1749–1755 (1976)

    Google Scholar 

  • Völlenkle, H., Wittmann, A., Nowotny, H.: Über Diphosphate vom Typ Me(IV)P2O7. Monatsh. Chemie 94, 956–963 (1963)

    Google Scholar 

  • Waser, J.: Least squares refinement with subsidiary conditions. Acta Crystallogr. 16, 1091–1094 (1963)

    Google Scholar 

  • Wells, A.F.: The geometrical basis of crystal chemistry. Part I. Acta Cryst. 7, 535–544 (1954)

    Google Scholar 

  • Wells, A.F.: The geometrical basis of crystal chemistry. XII. Review of structures based on three-dimensional 3-connected nets. Acta Cryst. B32, 2619–2676 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baur, W.H. Computer simulation of crystal structures. Phys Chem Minerals 2, 3–20 (1977). https://doi.org/10.1007/BF00307523

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307523

Keywords

Navigation