Skip to main content
Log in

The rice mitochondrial nad3 gene has an extended reading frame at its 5′ end: nucleotide sequence analysis of rice trnS, nad3, and rps12 genes

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The nucleotide sequences of the tRNASer (trnS), pseudo-tRNA, NADH dehydrogenase subunit 3 (nad3), and ribosomal protein S12 (rps12) genes from rice mitochondrial DNA (mtDNA) were determined. Both trnS and nad3 were confirmed to be single copy genes by Southern blot analysis. The nad3 and rps12 genes were arranged in tandem, and the two were co-transcribed. The order of the above four genes in rice mtDNA differed from the linear order observed for the wheat and maize genes. In rice mitochondria, the trnS and pseudo-tRNA genes were found upstream of the cytochrome c oxidase subunit I gene, instead of the nad3 and rps12 genes as observed in maize and wheat. Additionally, while the rice nad3 and rps12 genes remain paired, they too are in a different sequence environment from the wheat and maize genes. The apparent split of the two pairs of genes indicates the occurrence of a mitochondrial intramolecular recombinational event. Another peculiarity is that the sequence upstream of the translational initiation codon of the rice nad3 gene is different from that of the wheat and maize versions. The ATG initiation codon of wheat and maize nad3 is replaced by TTG in the rice nad3. A subsequent deduction of the amino acid sequence, accompanied by a primer extension analysis, indicates that the predicted rice NAD3 protein has an additional 37 amino acid residues at its N-terminus compared to the wheat and maize NAD3 proteins. cDNA sequence analysis showed no introns or the occurrence of RNA editing at the newly replaced TTG codon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Nature 290:457–465

    Google Scholar 

  • Anderson S, de Bruijin MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) J Mol Biol 156:683–717

    Google Scholar 

  • Bibb MJ, van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Cell 26:167–180

    Google Scholar 

  • Covello PS, Gray MW (1989) Nature 341:662–666

    Google Scholar 

  • Dale RMK, McClure BA, Houchins JP (1985) Plasmid 13:31–40

    Google Scholar 

  • Dewey RE, Levings III CS, Timothy DH (1986) Cell 44:439–449

    Google Scholar 

  • Fragoso LL, Nichols SE, Levings III CS (1989) Genome 31:160–168

    Google Scholar 

  • Gualberto JM, Wintz H, Weil J-H, Grienenberger J-M (1988) Mol Gen Genet 215:118–127

    Google Scholar 

  • Gualberto JM, Lamattina L, Bonnard G, Weil J-H, Grienenberger J-M (1989) Nature 341:660–662

    Google Scholar 

  • Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) Science 246:1632–1634

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) Mol Gen Genet 217:185–194

    Google Scholar 

  • Izuchi S, Sugita M (1989) Nucleic Acids Res 17:1248

    Google Scholar 

  • Kao T, Moon E, Wu R (1984) Nucleic Acids Res 12:7305–7315

    Google Scholar 

  • Kadowaki K, Ishige T, Suzuki S, Harada K, Shiniyo C (1986) Jpn J Breed 36:333–339

    Google Scholar 

  • Kadowaki K, Suzuki T, Kazama S, Oh-fuchi T, Sakamoto W (1989) Nucleic Acids Res 17:7519

    Google Scholar 

  • Kadowaki K, Suzuki T, Kazama S (1990) Mol Gen Genet 224:10–16

    Google Scholar 

  • Makaroff CA, Apel IJ, Palmer JD (1989) J Biol Chem 264:11706–11713

    Google Scholar 

  • Marechal L, Guillemaut P, Grienenberger J-M, Jeannin G, Weil J-H (1985) FEBS Lett 184:289–293

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Nature 322:572–574

    Google Scholar 

  • Palmer JD, Shields CR (1984) Nature 307:437–440

    Google Scholar 

  • Perbal B (1984) A practical guide to molecular cloning. A Wiley-Interscience Publication, New York, pp 276–279

    Google Scholar 

  • Roe BA, Ma D-P, Wilson RK, Wong JF_H (1985) J Biol Chem 260:9759–9774

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Stern DB, Newton KJ (1986) Methods Enzymol 118:488–496

    Google Scholar 

  • Walbot V (1991) Trends Genet 7:37–39

    Google Scholar 

  • Williams JG, Mason PJ (1985) In: Hames BD, Higgins SJ (eds) Nucleic acid hybridization. IRL Press, Oxford, pp 139–160

    Google Scholar 

  • Wintz H, Grienenberger J-M, Weil J-H, Lonsdale DM (1988) Curr Genet 13:247–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.W. Birky, Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Kazama, S., Hirai, A. et al. The rice mitochondrial nad3 gene has an extended reading frame at its 5′ end: nucleotide sequence analysis of rice trnS, nad3, and rps12 genes. Curr Genet 20, 331–337 (1991). https://doi.org/10.1007/BF00318523

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318523

Key words

Navigation