Skip to main content
Log in

Structural features and phylogeny of the actin gene of Chondrus crispus (Gigartinales, Rhodophyta)

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We have characterized the cDNA and genomic sequences that encode actin from the multicellular red alga Chondrus crispus. Southern-blot analysis indicates that the C. crispus actin gene (ChAc) is present as a single copy. Northern analysis shows that, like the GapA gene, the actin gene is well expressed in gametophytes but weakly in protoplasts. Compared to actin genes of animals, fungi, green plants and oomycetes, that of C. crispus displays a higher evolutionary rate and does not show any of the amino-acid signatures characteristic of the other lineages. As previously described for GapA, ChAc is interrupted by a single intron at the beginning of the coding region. The site of initiation of transcription was characterized by RNAse protection. The promoter region displays a CAAT box but lacks a canonical TATA motif. Other noticeable features, such as a high content of pyrimidines as well as a 14-nt motif found in both the 5′-untranslated region and the intron, were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso S (1987) Biochimie 69:1119–1125

    Google Scholar 

  • Apt KE, Grossman AR (1992) Plant Physiol 99:1732–1733

    Google Scholar 

  • Apt KE, Grossman AR (1993) Plant Mol Biol 21:27–38

    Google Scholar 

  • Apt KE, Hoffman NE, Grossman AR (1993) J Biol Chem 268:16208–16215

    Google Scholar 

  • Assali NE, Loiseaux de Goër S (1992) J Phycol 28:209–213

    Google Scholar 

  • Ben Amer MF, Pays A, Tebabi P, Dero B, Seebeck T, Steinert M, Pays E (1988) Mol Cell Biol 8:2166–2176

    Google Scholar 

  • Bhattacharya D, Elwood HJ, Goff LJ, Sogin ML (1990) J Phycol 26:181–186

    Google Scholar 

  • Bhattacharya D, Stickel SK, Sogin ML (1991) J Mol Evol 33:525–536

    Google Scholar 

  • Bhattacharya D, Stickel SK, Sogin ML (1993) Mol Biol Evol 10:689–703

    Google Scholar 

  • Brown JWS (1989) Nucleic Acids Res 14:9549–9559

    Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Genes Dev 10:1183–1200

    Google Scholar 

  • Cantrell A, Bryant DA (1987) Plant Mol Biol 9:453–468

    Google Scholar 

  • Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger C and Chambon P (1980) Science 209:1405–1414

    Google Scholar 

  • Crain WR Jr, Boshar MF, Cooper AD, Durica DS, Nagy A, Steffen D (1987) J Mol Evol 25:37–45

    Google Scholar 

  • Cresnar B, Mages W, Muller K, Salbaum JM, Schmitt R (1990) Curr Genet 18:337–346

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) Nucleic Acids Res 12:387–395

    Google Scholar 

  • Dover GA (1987) J Mol Evol 26:47–58

    Google Scholar 

  • Drouin G, Dover GA (1990) J Mol Evol 31:132–150

    Google Scholar 

  • Dudler R (1990) Plant Mol Biol 14:415–422

    Google Scholar 

  • Felsenstein J (1985) Evolution 39:783–791

    Google Scholar 

  • Fidel S, Doonan JH, Morris NR (1988) Gene 70:283–293

    Google Scholar 

  • Gallwitz D, Sures I (1980) Proc Natl Acad Sci USA 77: 2546–2550

    Google Scholar 

  • Goldman RD, Schloss JA, Starger JM (1976) Organizational changes of actin-like microfilaments during animal cell movement. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility, book A. Cold Spring Harbor conferences on cell proliferation, vol 3. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 217–245

    Google Scholar 

  • Goodner B, Quatrano RS (1993) Plant Cell 5:1471–1481

    Google Scholar 

  • Hendricks L, De Baere R, Van de Peer Y, Neefs J, Goris A, De Wachter R (1991) J Mol Evol 32:167–177

    Google Scholar 

  • Herrick KR, Gorin FA, Park EA, Tait RC (1993) Gene 126:203–211

    Google Scholar 

  • Johnson P, Friedmann T (1990) Gene 88:207–213

    Google Scholar 

  • Joshi CP (1987a) Nucleic Acids Res 15:6643–6653

    Google Scholar 

  • Joshi CP (1987b) Nucleic Acids Res 15:9627–9640

    Google Scholar 

  • Korn ED (1978) Proc Natl Acad Sci USA 75:588–599

    Google Scholar 

  • Krainer AR, Maniatis T (1988) RNA splicing. In: Hames BD, Glover DM (eds) Transcription and splicing. IRL Press, Oxford, pp 131–206

    Google Scholar 

  • Krause M, Wild M, Rosenzweig B, Hirsh D (1989) J Mol Biol 208:381–392

    Google Scholar 

  • LeGall Y, Brown S, Marie D, Mejjad M, Kloareg B (1993) Protoplasta 173:123–132

    Google Scholar 

  • Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O (1991) Proc Natl Acad Sci USA 88:3319–3323

    Google Scholar 

  • Li WH, Wu CI, Luo CC (1985) Mol Biol Evol 2:150–174

    Google Scholar 

  • Liaud MF, Valentin C, Bouget FY, Kloareg B, Cerff R (1993) Plant Mol Biol 23:981–994

    Google Scholar 

  • Liaud MF, Valentin C, Martin W, Bouget FY, Kloareg B, Cerff R (1994) J Mol Evol 38:319–327

    Google Scholar 

  • Losberger C, Ernst JF (1989) Nucleic Acids Res 17:9488

    Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990a) Plant Cell 2:163–171

    Google Scholar 

  • McElroy D, Rothenberg M, Wu R (1990b) Plant Mol Biol 14:163–171

    Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Mol Gen Genet 231:150–160

    Google Scholar 

  • McLean BG, Huang S, McKinney EC, Meagher RB (1990) Cell Motil Cytoskel 17:276–290

    Google Scholar 

  • Meyer Y, Chartier Y (1981) Plant Physiol 68:1273–1278

    Google Scholar 

  • Mounier N, Gillard J, Prudhomme JC (1987) Nucleic Acids Res 15:2781

    Google Scholar 

  • Nairn CJ, Winsett L, Ferl RJ (1988) Gene 65:247–257

    Google Scholar 

  • Ng R, Abelson J (1980) Proc Natl Acad Sci USA 77:3912–3916

    Google Scholar 

  • Pearson L, Meagher RB (1990) Plant Mol Biol 14:513–526

    Google Scholar 

  • Ponte P, Ng SY, Engel J, Gunning P, Kedes L (1984) Nucleic Acids Res 12:1687–1696

    Google Scholar 

  • Prabhala G, Rosenberg GH, Käufer N (1992) Yeast 8:171–182

    Google Scholar 

  • Reynolds GA, Basu SK, Osborne TF, Chin DL, Gil G, Goldstein JL and Luskey KL (1984) Cell 38:275–285

    Google Scholar 

  • Ruby SW, Abelson J (1991) Trends Genet 7:79–85

    Google Scholar 

  • Saitou N, Nei M (1987) Mol Biol Evol 4:406–425

    Google Scholar 

  • Sambrook J, Frisch EF, Maniatis T (1989): Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463

    Google Scholar 

  • Scagel RF, Bandoni RJ, Maze JR, Rousse GE, Schofield WB, Stein JR (1982) Nonvascular plants: an evolutionary survery. Wadsworth Inc, Belmont, California

    Google Scholar 

  • Shah DM, Hightower RC, Meagher RB (1982) Proc Natl Acad Sci USA 79:1022–1026

    Google Scholar 

  • Shah DM, Hightower RC, Meagher RB (1983) J Mol Appl Genet 2:111–126

    Google Scholar 

  • Stosel TP (1984) J Cell Biol 99:15s-21s

    Google Scholar 

  • Wesseling JG, de Ree JM, Ponnudurai T, Smits MA, Schoenmakers JG (1988) J Mol Biochem Parasitol 27:313–320

    Google Scholar 

  • Williamson RE (1980) Can J Bot 58:766–772

    Google Scholar 

  • Zhou YH, Ragan MA (1993) Curr Genet 23:483–489

    Google Scholar 

  • Zhou YH, Ragan MA (1994) Curr Genet 26:79–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.-D. Rochaix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouget, FY., Kerbourc'h, C., Liaud, MF. et al. Structural features and phylogeny of the actin gene of Chondrus crispus (Gigartinales, Rhodophyta). Curr Genet 28, 164–172 (1995). https://doi.org/10.1007/BF00315783

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315783

Key words

Navigation