Skip to main content
Log in

A modified method for routine Agrobacterium-mediated transformation of in vitro grown potato microtubers

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

In vitro-grown potato (Solanum tuberosum L.) microtubers were used as an explant source in the production of transgenic plants by Agrobacterium-mediated gene transfer. In this study we tested four diverse potato cultivars, Lemhi Russet, Russet Burbank, Wauseon, and Yankee Chipper on various levels of zeatin riboside and 3-indoleacetyl-DL-aspartic acid for their ability to regenerate transgenic plants after infection with Agrobacterium tumefaciens. Culturing microtuber blocks from the medullary area separately from cortex and epidermal tissue containing the eyes resulted in fewer transgenic plants, with transgenic shoots arising only from the tissue with the eyes. Lemhi and Russet Burbank microtuber discs were also transformed with a chimeric gene, CLaSP, designed to increase resistance to blackspot bruise in the tuber. This method resulted in transformed plants in every experiment, with an efficiency that appeared to be genotype dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GUS:

β-glucuronida (uidA)

IAA-AA:

3-indoleacetyl-DL-aspartic acid

LB:

Luria-Bertani

LSP:

larval serum storage protein

nos:

nopaline synthase

npt II:

neomycin phosphotransferase

MS:

Murashige and Skoog

PHA:

phytohemaglutinin

ZR:

zeatin riboside

References

  • An G, Watson BD, Chiang CC (1986) Plant Physiol 81:301–305

    Google Scholar 

  • An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) EMBO J 4:277–284

    Google Scholar 

  • Anand VK, Heberlein GT (1977) Am J Bot 64:153–158

    Google Scholar 

  • Bevan M (1984) Nucleic Acids Res 12:8711–8721

    Google Scholar 

  • Bevan M (1986) Nucleic Acids Res 14:4625–4636

    Google Scholar 

  • Bourque JE, Moller JC, Park WD (1987) In Vitro 23:381–386

    Google Scholar 

  • De Block M (1988) Theor Appl Genet 76:767–774.

    Google Scholar 

  • Dorel C, Volker TA, Herman EM, Chrispeels MJ (1989) J. Cell Biol 108:327–337.

    Google Scholar 

  • Hoekems A, Hirsch PR, Hooykaas PJJ, Schilperoot RA (1983) Nature 303:179–181.

    CAS  Google Scholar 

  • Hoekema A, Huisman MJ, Molendijk L, van den Elzen PJM, Cornelissen BJC (1989) Biotechnology 7:273–278

    Google Scholar 

  • Ishida BK, Snyder, Jr GW, Belknap WR (1989) Plant Cell Rep 8:325–328

    Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) Proc Natl Acad Sci USA 83:8447–8451

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) EMBO J. 6:3901–3907

    Google Scholar 

  • Knapp S, Coupland G, Uhrig H, Starlinger P, Salamini F (1988) Mol Gen Genet 213:285–290

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Theor Appl Genet 60:197–214

    Google Scholar 

  • McBride KE, Summerfelt KR (1990) Plant Mol Biol 14:269–276

    Google Scholar 

  • McMaster GK, Carmichael GG, (1977) Proc Natl Acad Sci USA 74:4385–4389

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Ooms G, Burrell MM, Karp A, Bevan M, Hille J (1987) Theor Appl Genet 73:744–750

    Google Scholar 

  • Ooms G, Karp A, Burrell MM, Twell D, Roberts J (1985) Theor Appl Genet 70:440–446

    Google Scholar 

  • Pueppke SG, Benny UK (1981) Phys Plant Path 18:169–179

    Google Scholar 

  • Ray, A, Memmel NA, Orchekowski RP, Kumaran AK (1987) Insect Biochemistry 17:603–617

    Google Scholar 

  • Rocha-Sosa M, Sonnewald U, Frommer M, Stratmann M, Schell J, Willmitzer L (1989) EMBO J 8:23–29

    Google Scholar 

  • Shahin EA, Simpson RB (1986) HortSci 2:1199–1201

    Google Scholar 

  • Sheerman S, Bevan MW (1988) Plant Cell Rep 7:13–16

    Google Scholar 

  • Shepard JF, Bidney D, Shahin E (1980) Science 208:17–24

    Google Scholar 

  • Stark JC, Corsini DL, Hurley PJ, Dwelle RB (1985) Amer Potato J 62:657–666

    Google Scholar 

  • Stiekema WJ, Heidekamp F, Louwerse JD, Verhoeven HA, Dijkhuis P (1988) Plant Cell Rep 7:47–50

    Google Scholar 

  • Tavazza R, Tavazza M, Ordas RJ, Ancora G, Benvenuto E (1988) Plant Sci 59:175–181

    Google Scholar 

  • Twell D, Ooms G (1987) Plant Mol Biol 9:345–375

    Google Scholar 

  • Verwoerd TC, Dekker BMM, Hoekema A (1989) Nuc Acids Res 17:2362

    Google Scholar 

  • Wenzler HC, Migner GA, Fisher LM, Park WD (1989) Plant Mol Biol 12:41–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Widholm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, G.W., Belknap, W.R. A modified method for routine Agrobacterium-mediated transformation of in vitro grown potato microtubers. Plant Cell Reports 12, 324–327 (1993). https://doi.org/10.1007/BF00237428

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237428

Keywords

Navigation