Skip to main content
Log in

Relative ion sputtering yield measurements by integration of secondary ion energy distribution using a retarding-dispersive Ion energy analyzer

  • Contributed Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

The application of a retarding-dispersive energy analyzer as the pre-filter of a quadrupole mass analyzer has made it possible to combine a standard high-speed Secondary Ion Mass Spectrometer (SIMS) and a high-resolution secondary-ion energy analyzer into one instrument. Data taken with this instrument indicate the presence of very significant high-energy tails in the energy distribution of all observed secondary ions, even with relatively low (2 keV) primary ion energies. The shape of the energy distribution varies widely from element to element, for atomic compared to molecular species sputtered from a clean metal surface, and depends, for a given species sputtered from a metal surface, on the degree of surface oxidation.

The variations established in the present work are large enough to introduce in many cases substantial discrepancies between published values of both relative ion sputtering yields and surface elemental concentrations and values obtained by considering the complete energy distribution. Methods of obtaining accurate secondary ion yields by integrating the energy distribution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refernces

  1. A.R.Krauss, D.M.Gruen: J. Nucl. Mat.63 (in press)

  2. P.Sigmund: Phys. Rev.184, 383 (1969)

    Article  ADS  Google Scholar 

  3. M.W.Thompson: Phil. Mag.18, 377 (1968)

    Google Scholar 

  4. G.P.Können, A.Tip, A.E.de Vries: Rad. Eff.21, 269 (1974)

    Google Scholar 

  5. M.W.Thompson: Phil. Mag.18, 415 (1968)

    Google Scholar 

  6. G.P.Können, J.Grosser, A.Haring, A.E.DeVries, J.Kistemaker: Rad. Eff.21, 171 (1974)

    Google Scholar 

  7. C.A.Andersen: Int. J. Mass Spec. Ion Phys.2, 61 (1969),3, 413 (1970)

    Article  Google Scholar 

  8. W.F.Van derWeg, D.J.Bierman: Physica44, 177, 206 (1969)

    Article  ADS  Google Scholar 

  9. A.Benninghoven. Z. Physik220, 159 (1969)

    Article  Google Scholar 

  10. J.M.Schroeer, T.N.Rhodin, R.CBradley: Surf. Sci.34, 571 (1973)

    Article  Google Scholar 

  11. Z.Sroubek: Surf. Sci.44, 47 (1974)

    Article  Google Scholar 

  12. P.Joyes: J. Phys. (Paris)30, 365 (1969)

    Google Scholar 

  13. G.Blaise, G.Slodzian: J. Phys. (Paris)31, 93 (1970)

    Google Scholar 

  14. R.J.MacDonald: Surf. Sci.43, 653 (1974)

    Article  Google Scholar 

  15. E.Dennis, R.J.MacDonald: Rad. Eff.13, 243 (1972)

    Google Scholar 

  16. Z.Jurela: Rad. Eff.19, 175 (1973)

    Google Scholar 

  17. R.J.MacDonald: Adv. Phys.19, 457 (1970)

    Article  ADS  Google Scholar 

  18. G.Staudenmaier: Rad. Eff.13, 87 (1972)

    Google Scholar 

  19. Z.Jurela, B.Perovic: Can. J. Phys.46, 773 (1968)

    ADS  Google Scholar 

  20. P.Staib: Vacuum22, 481 (1972)

    Article  Google Scholar 

  21. J.Kirschner, P.Staib: 34th Ann Conf. Physical Electronics, Murray Hill, NJ (1974)

  22. W.Paul, H.P.Reinhard, U.vonZahn: Z. Physik152, 143 (1958)

    Article  Google Scholar 

  23. Extranuclear Laboratories Model No. 270-9 with 2.2 MHz RF head

  24. R.Nagarajon, P.K.Ghosh: Int. J. Mass. Spec. Ion Phys.12, 79 (1973)

    Article  Google Scholar 

  25. P.H.Dawson: Int. J. Mass. Spec. Ion Phys.17, 423, 447 (1975)

    Article  Google Scholar 

  26. Extranuclear Laboratories model 13 high-voltage RF head

  27. D.A.Huchital, J.D.Rigden: J. Appl. Phys.43, 2291 (1972)

    Article  ADS  Google Scholar 

  28. C.A.Andersen, J.R.Hinthorne: Anal. Chem.45, 1421 (1973)

    Article  Google Scholar 

  29. G.Sparrow: Private communication

  30. F.G.Rudenauer: Vacuum22, 609 (1972)

    Article  Google Scholar 

  31. UTI model 100C

  32. A.Benninghoven, C.Plog, N.Treitz: Int. J. Mass. Spec. Ion Phys.13, 415 (1974)

    Article  Google Scholar 

  33. G.P.Können, A.Tip, A.E.deVries: Rad. Eff.26, 23 (1975)

    Google Scholar 

  34. F.Bernhardt, H.Oechsner, E.Stumpe: Nucl. Inst. Meth.132, 329 (1976)

    Article  Google Scholar 

  35. G.A.v. d.Schootbrugge, A.G.J.deWit, J.M.Fluit: Nucl. Inst. Meth.132, 321 (1976)

    Article  Google Scholar 

  36. K.Wittmaack: Nucl Inst. Meth.132, 381 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed under the auspices of the Division of Physical Research of the U.S. Energy Research and Development Administration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauss, A.R., Gruen, D.M. Relative ion sputtering yield measurements by integration of secondary ion energy distribution using a retarding-dispersive Ion energy analyzer. Appl. Phys. 14, 89–97 (1977). https://doi.org/10.1007/BF00882637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00882637

PACS Code

Navigation