Skip to main content
Log in

The sputtering of gallium arsenide at elevated temperatures

  • Contributed Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

The energy distribution of atoms and molecules sputtered from a polycrystalline GaAs sample with a 6 keV Ar ion beam have been measured. The temperature of the target ranged from 30°C to 350°C. Total sputtering yield of the investigated sample has also been measured. The results clearly show that there is a large contribution of molecular component in the sputtered flux and that the molecular component increases above 250°C in comparison to the atomic components thus yielding an increase in the total sputtering yield, as observed previously by Brozdowska et al. The enhanced molecular component at temperatures above 250°C can be explained by the appearance of a spike effect. The results obtained at low temperature can be explained in terms of the collision cascade mode. There is no contribution of beam-induced thermal vaporization to the sputtering of GaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proc. 2nd Intern. Conf. on Ion Implantation in Semiconductors, ed. by I. Ruge and J. Granl (Springer, Berlin, Heidelberg, New York 1971)

    Google Scholar 

  2. D.J. Mazey, R.S. Nelson: Radiat. Eff.1, 229 (1969)

    Google Scholar 

  3. R. Bicknell, P.L.F. Hemment, E.C. Bell, J.E. Tansey: Phys. Stat. Sol. A12, K9 (1972)

    Article  Google Scholar 

  4. S.T. Picraux: inProc. of 3rd Intern. Conf. on Ion Implantation in Semiconductors, ed. by B.L. Crowder (Plenum Press, New York, London 1973) p. 641

    Google Scholar 

  5. B. Brozdowska-Warczak, L. Gabŀa, R. Pedrys, M. Szymoński, A. Warczak: Surf. Sci.75, 61 (1978)

    Article  Google Scholar 

  6. J. Farren, W.J. Scaife: Talanta15, 1217 (1968)

    Article  Google Scholar 

  7. M. Szymoński, H. Overeijnder, A.E. de Vries: Radiat. Eff.36, 189 (1978)

    Google Scholar 

  8. P. Sigmund: Rev. Roum. Phys.17, 1079 (1972)

    Google Scholar 

  9. P. Sigmund: Phys. Rev.184, 383 (1969)

    Article  ADS  Google Scholar 

  10. K.B. Winterbon:Ion Implantation Range and Energy Deposition Distributions (Plenum Press, New York 1975)

    Google Scholar 

  11. M.W. Thompson, R.S. Nelson: Phil. Mag.7, 2015 (1962)

    Google Scholar 

  12. R.S. Nelson: Phil. Mag.11, 291 (1965)

    Google Scholar 

  13. G.E. Chapman, B.W. Farmery, M.W. Thompson, J.H. Wilson: Rad. Effects13, 121 (1972)

    Google Scholar 

  14. M. Szymoński, R.S. Bhattacharya, H. Overeijinder, A.E. de Vries: J. Phys. D (Appl. Phys.)11, 751 (1978)

    Article  ADS  Google Scholar 

  15. R. Kelly: Radiat. Eff.32, 91 (1977)

    Google Scholar 

  16. P. Sigmund: InInelastic Ion-Surface Collisions, ed. by N.H. Toll et al (Academic Press, New York 1978)

    Google Scholar 

  17. J.A. Moore, G. Carter, A.W. Tinsley: Radiat. Eff.25, 49 (1975)

    Google Scholar 

  18. D.A. Thompson, R.S. Walker, J.A. Davies: Radiat. Eff.32, 135 (1977)

    Google Scholar 

  19. G.P. Können, A. Tip, A.E. de Vries: Radiat. Eff.26, 23 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The experiment has been performed at the FOM-Instituut voor Atoom-en Molecuulfysica, Kruislaan 407, Amsterdam/WGM., The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szymoński, M., Bhattacharya, R.S. The sputtering of gallium arsenide at elevated temperatures. Appl. Phys. 20, 207–211 (1979). https://doi.org/10.1007/BF00886019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00886019

PACS

Navigation