Skip to main content
Log in

Development of magnetic anisotropies in ultrathin epitaxial films of Fe(001) and Ni(001)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrathin films, bcc Fe(001) on Ag(001), fcc Fe(001) on Cu(001) and Fe/Ni(001) bilayers on Ag, were grown by molecular beam epitaxy. A wide range of surface science tools were employed to establish the quality of epitaxial growth. Ferromagnetic resonance and Brillouin light scattering were used to extract the magnetic properties. Emphasis was placed on the study of magnetic anisotropies. Large uniaxial anisotropies with easy axis perpendicular to the film surface were observed in all ultrathin structures studied. These anisotropies were particularly strong in fcc Fe and bcc Fe films. In sufficiently thin samples the saturation magnetization was oriented perpendicularly to the film surface in the absence of an applied field. It has been demonstrated that in bcc Fe films the uniaxial perpendicular anisotropy originates at the film interfaces. In situ measurements indentified the strength of the uniaxial perpendicular anisotropy constant at the Fe/vacuum, Fe/Ag and Fe/Au interfaces asK us = 0.96, 0.63, and 0.3 ergs/cm2 respectively. The surface anisotropies deduced for [bulk Fe/noble metal] interfaces are in good agreement with the values obtained from ultrathin films. Hence the perpendicular surface ansiotropies originate in the broken symmetry at abrupt interfaces. An observed decrease in the cubic anisotropy in bcc Fe ultrathin films has been explained by the presence of a weak 4th order in-plane surface anisotropy,K 1∥S=0.012 ergs/cm2. Fe/Ni bilayers were also investigated. Ni grew in the pure bcc structure for the first 3–6 ML and then transformed to a new structure which exhibited unique magnetic properties. Transformed ultrathin bilayers possessed large inplane 4th order anisotropies far surpassing those observed in bulk Fe and Ni. The large 4th order anisotropies originate in crystallographic defects formed during the Ni lattice transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Kittel: Phys. Rev.110, 1295 (1958)

    Google Scholar 

  2. M.H. Seavey, P.E. Tannewald: Phys. Rev. Lett.1, 168 (1958)

    Google Scholar 

  3. C.L. Fu, A.J. Freeman, T. Oguchi: Phys. Rev. Lett.54, 2700 (1985)

    Google Scholar 

  4. V.L. Moruzzi, P.M. Marcus: Phys. Rev. B38, 1613 (1988)

    Google Scholar 

  5. J.G. Gay, Roy Richter: Phys. Rev. Lett.56, 2728 (1986)

    Google Scholar 

  6. B.T. Jonker, K.H. Walker, E. Kisker, G.A. Prinz, C. Carbone: Phys. Rev. Lett.57, 142 (1986)

    Google Scholar 

  7. This identification of a commercial instrument does not signify any endorsement by the National Institute of Standards and Technology and is intended only to specify experimental conditions

  8. R.L. Lyles, Jr., S.T. Rothman, W. Jager: Metallography11, 361 (1978)

    Google Scholar 

  9. B. Heinrich, K.B. Urquhart, J.R. Dutcher, S.T. Purcell, J.F. Cochran, A.S. Arrott, D.A. Steigerwald, W.F. Egelhoff, Jr.: J. Appl. Phys.63, 3863 (1988)

    Google Scholar 

  10. S.T. Purcell, A.S. Arrott, B. Heinrich: J. Vac. Sci. Technol. B6, 794 (1988)

    Google Scholar 

  11. B. Heinrich, A.S. Arrott, J.F. Cochran, C. Liu, K. Myrtle: J. Vac. Sci. Technol.A4, 1376 (1986)

    Google Scholar 

  12. Z.Q. Wang, Y.S. Li, F. Jona, P.M. Marcus: Solid State Commun.61, 623 (1987)

    Google Scholar 

  13. B. Heinrich, A.S. Arrott, J.F. Cochran, S.T. Purcell, K.B. Urquhart, N. Alberding, C. Liu:Thin Film Growth Techniques for Low Dimensional Structures, ed. by R.F.C. Farrow et al. (Plenum, New York 1987) pp. 521–548

    Google Scholar 

  14. D. Jiang, E.D. Crozier, N. Alberding, B. Heinrich: To be published

  15. D.A. Steigerwald, W.F. Egelhoff, Jr.: Surf. Sci.192, L887 (1987)

    Google Scholar 

  16. S.A. Chambers, T.J. Wagener, J.H. Weaver: Phys. Rev. B36, 8992 (1987)

    Google Scholar 

  17. D.A. Steigerwald, I. Jacob, W.F. Egelhoff, Jr.: Surf. Sci.202, 472 (1988)

    Google Scholar 

  18. W.F. Egelhoff, Jr., I. Jacob: Phys. Rev. Lett.62, 921 (1989)

    Google Scholar 

  19. D.A. Steigerwald, W.F. Egelhoff, Jr.: Phys. Rev. Lett.60, 2558 (1988)

    Google Scholar 

  20. C. Liu, E.R. Moog, S.D. Bader: Phys. Rev. Lett.60, 2442 (1988)

    Google Scholar 

  21. D. Pescia, M. Stampanoni, G.L. Bona, A. Vaterlaus, R.F. Willis, F. Meier: Phys. Rev. Lett.58, 2126 (1987)

    Google Scholar 

  22. W. Daum, C. Stuhlmann, H. Ibach: Phys. Rev. Lett.60, 2741 (1988)

    Google Scholar 

  23. B. Heinrich, S.T. Purcell, J.R. Dutcher, K.B. Urquhart, J.F. Cochran, A.S. Arrott: Phys. Rev. B1538, 879–896 (1988)

    Google Scholar 

  24. J.F. Cochran, B. Heinrich, A.S. Arrott: Phys. Rev. B34, 7788 (1986)

    Google Scholar 

  25. B. Heinrich, K.B. Urquhart, A.S. Arrott, J.F. Cochran, K. Myrtle, S.T. Purcell: Phys. Rev. Lett.59, 1756 (1987)

    Google Scholar 

  26. V. Kambersky: Czech. J. Phys. B26, 1366 (1976)

    Google Scholar 

  27. B. Heinrich, J.F. Cochran, R. Hasegawa: J. Appl. Phys.57, 3690 (1985)

    Google Scholar 

  28. M. Stampanoni, A. Vaterlaus, M. Aeschlimann, F. Meier: Phys. Rev. Lett.59, 2483 (1987)

    Google Scholar 

  29. F.A. Volkening, B.T. Jonker, J.J. Krebs, N.C. Koon, G.A. Prinz: J. Appl. Phys.63, 3869 (1988)

    Google Scholar 

  30. J.J. Krebs, B.T. Jonker, G.A. Prinz: J. Appl. Phys.63, 3467 (1988)

    Google Scholar 

  31. K.B. Urquhart, B. Heinrich, J.F. Cochran, A.S. Arrott, K. Myrtle: J. Appl. Phys.64, 5334 (1988)

    Google Scholar 

  32. B.T. Jonker, J.J. Krebs, G.A. Prinz: J. Appl. Phys.64, 5340 (1988)

    Google Scholar 

  33. C. Chappert, P. Bruno: J. Appl. Phys.64, 5736 (1988)

    Google Scholar 

  34. Z. Frait, D. Fraitova: J. Magn. Magn. Mat.15–18, 1081 (1980)

    Google Scholar 

  35. S.T. Purcell, B. Heinrich, A.S. Arrott: J. Appl. Phys.64, 5337 (1988)

    Google Scholar 

  36. R.W. Damon, J.R. Eshbach: J. Phys. Chem. Solids19, 308 (1988)

    Google Scholar 

  37. J.R. Sandercock, W. Wettling: J. Appl. Phys.50, 7784 (1979)

    Google Scholar 

  38. J.R. Dutcher, J.F. Cochran, B. Heinrich, A.S. Arrott: J. Appl. Phys.64, 6095 (1988)

    Google Scholar 

  39. W. Karas, J. Noffke, L. Fritsche: 12th International Colloquium on Magnetic Films and Surfaces, Le Creusot, France (1988)

  40. J.R. Dutcher, B. Heinrich, J.F. Cochran, D.A. Steigerwald, W.F. Egelhoff, Jr.: J. Appl. Phys.63, 3464 (1988)

    Google Scholar 

  41. J.R. Dutcher, J.F. Cochran, I. Jacob, W.F. Egelhoff, Jr.: Phys. Rev. B39, 10430 (1989)

    Google Scholar 

  42. R.F. Willis, J.A.C. Bland, W. Schwartzacher: J. Appl. Phys.63, 4051 (1988)

    Google Scholar 

  43. Dr. W. Schwartzacher: University of Cambridge (private communication)

  44. M. Stampanoni, A. Vaterlaus, M. Aeschlimann, F. Meier: J. Appl. Phys.64, 5321 (1988)

    Google Scholar 

  45. B. Heinrich, A.S. Arrott, J.F. Cochran, S.T. Purcell, K.B. Urquhart, K. Myrtle: J. Cryst. Growth81, 562 (1987)

    Google Scholar 

  46. G. Dewar, B. Heinrich, J.F. Cochran: Can. J. Phys.55, 821 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, B., Cochran, J.F., Arrott, A.S. et al. Development of magnetic anisotropies in ultrathin epitaxial films of Fe(001) and Ni(001). Appl. Phys. A 49, 473–490 (1989). https://doi.org/10.1007/BF00617014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617014

PACS

Navigation