Skip to main content
Log in

Interaction of atomic hydrogen with the graphite single-crystal surface

I. Angle-resolved photoemission studies

  • Solids and Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have studied the chemisorption of atomic hydrogen on the basal plane of natural graphite single crystals. LEED and angle-resolved photoemission were used to characterize the clean surface. The adsorption of H saturates at rather low exposures, accompanied by a decrease of the work function by Δφ=(100±20) meV. The photoemission spectra indicate a clear carbon-hydrogen interaction, leading to shifts of substrate bands by up to about 200 meV. No detectable etching of the surface occurs at room temperature, in agreement with earlier work. Our results are qualitatively consistent with theoretical considerations about a strong H(1s)-C(2p z) chemical bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Vietzke, J. Philipps: Fusion Technology 15, 108 (1989)

    Google Scholar 

  2. V. Philipps, E. Vietzke, M. Erdweg: J. Nucl. Mater. 162–164, 550 (1989); see also same journal p. 520

    Google Scholar 

  3. Y. Matsuzaki, JFT-2M-Team: J. Nucl. Mater. 162–164, 752 (1989)

    Google Scholar 

  4. J. Bohdansky, J. Roth: Effects 89, 49 (1985)

    Google Scholar 

  5. E. Vietzke, M. Erdweg, K. Flaskamp, V. Philipps: Proc. 9th Int'l Vacuum Congress and 5th Int'l Conf. Solid Surfaces, Madrid (1983) p. 627

  6. A.A. Haas, J.W. Davis, O. Auciello, P.C. Stangeby, E. Vietzke, K. Flaskamp, V. Philipps: J. Nucl. Mater. 145–147, 412 (1987); see also same journal p. 292

    Google Scholar 

  7. K. Christmann: Surf. Sci. Reps. 9, 1 (1988)

    Google Scholar 

  8. A.R. Law, M.T. Johnson, H.P. Hughes: Phys. Rev. B 34, 4289 (1986)

    Google Scholar 

  9. D. Marchand, C. Frétigny, M. Lagues, F. Batallan, Ch. Simon, I. Roseman, R. Pinchaux: Phys. Rev. B 30, 4788 (1984)

    Google Scholar 

  10. I. Schäfer, M. Schlüter, M. Skibowski: Phys. Rev. B 35, 7663 (1987)

    Google Scholar 

  11. B. Reihl, J.K. Gimzewski, J.M. Nicholls, E. Tosatti: Phys. Rev. B 33, 5770 (1986)

    Google Scholar 

  12. T. Takahashi, M. Tokailin, T. Sagawa: Phys. Rev. B 32, 8317 (1985)

    Google Scholar 

  13. K. Jost: J. Phys. E 12 1006 (1979)

    Google Scholar 

  14. We thank Prof. G. Schönhense for supplying us with constructional details

  15. R.C. Tatar, S. Rabii: Phys. Rev. B 25, 4126 (1982) and several references therein

    Google Scholar 

  16. E.W. Plummer, W. Eberhardt: Adv. Chem. Phys. 49, 533 (1982)

    Google Scholar 

  17. F.J. Himpsel: Adv. Phys. 32, 1 (1983)

    Google Scholar 

  18. P. Oelhafen, J.L. Freeouf: J. Vas. Sci. Technol. A 1, 96 (1983)

    Google Scholar 

  19. R.C. Claessens, H. Carstensen, M. Skibowski: Phys. Rev. B 38, 12582 (1988)

    Google Scholar 

  20. A.R. Law, J.J. Barry, H.P. Hughes: Phys. Rev. B 29, 5332 (1983)

    Google Scholar 

  21. M. Fink, M.R. Martin: Surf. Sci. 29, 303 (1972)

    Google Scholar 

  22. E. Vietzke, K. Flaskamp, V. Philipps: J. Nucl. Mater. 111–112, 763 (1982)

    Google Scholar 

  23. U. Kürpick, G. Meister, A. Goldmann: To be published in Appl. Phys. (1992)

  24. A.J. Bennett, B. McCarroll, R.P. Messmer: Surf. Sci. 24, 191 (1971)

    Google Scholar 

  25. R. Dovesi, C. Pisani, F. Ricca, C. Roetti: J. Chem. Phys. 65, 4116 (1976); J. Chem. Phys. 65, 3075 (1976)

    Google Scholar 

  26. R. Dovesi, C. Pisani, C. Roetti: Chem. Phys. Letters 81, 498 (1981); Surf. Sci. 72, 140 (1978)

    Google Scholar 

  27. J.P. Chen, R.T. Yang: Surf. Sci. 210, 481 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, D., Meister, G., Kürpick, U. et al. Interaction of atomic hydrogen with the graphite single-crystal surface. Appl. Phys. A 55, 489–492 (1992). https://doi.org/10.1007/BF00348338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348338

PACS

Navigation