Skip to main content
Log in

The magnetism of nickel monolayers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nickel allows to study the largest variety of phenomena in the magnetism of UHV ultrathin films. The low critical temperature of ≈ 630 K for the bulk favors experiments from 0 K to aboveT c and from one monolayer to infinite thick films. The thickness dependence ofT c (d) for the (001) and the (111) orientation is compared. Susceptibility measurements in UHV are presented, and from χmax the film geometry can be deduced. Ferromagnetic resonance measures the second- and fourth-order anisotropy constants. These give a clear understanding of when and how the reorientation transition from the in-plane to the perpendicular orientation occurs and its nature. Magnetic resonance and circular X-ray dichroism measure the spin and orbital parts of the magnetic moment µ, its anisotropy Δµ, and the 3d and 4sp contributions. Finally, we show how a 4 Monolayer (ML) Ni(001) film can be transformed into NiO by controlled oxygen dosage and thermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. L. Néel: J. Phys. (Paris) Radium15, 225 (1954)

    Google Scholar 

  2. U. Gradmann: Ann. Phys.17, 91 (1966)

    Google Scholar 

  3. U. Gradmann: InHandbook of Magnetic Materials, Vol. 7, ed. by K.H.J. Bushow (Elsevier, Amsterdam 1993) Chap. 1

    Google Scholar 

  4. B. Heinrich, J.A.C. Bland:Ultrathin Magnetic Structures I, II (Springer, Berlin, Heidelberg 1994)

    Google Scholar 

  5. See, for example: L.J. de Jongh, A.R. Miedema: Adv. Phys.23, 1 (1974)

    Google Scholar 

  6. Y. Li, K. Baberschke: Phys. Rev. Lett.69, 1209 (1992)

    Google Scholar 

  7. R. Bergholz, U. Gradmann: J. Magn. Magn. Mater45, 389 (1984)

    Google Scholar 

  8. See, for example: D.K. Wohlleben, B.R. Coles: InMagnetism V, ed. by G. T. Rado, H. Suhl (Academic, New York 1973)

    Google Scholar 

  9. T c may not be identical toΘ, for details see standard literature (e.g, Ref. [10])

  10. J.J. Binney, H.J. Dowerick, A.J. Fisher, M.E.J. Neuman:The Theory of Critical Phenomena (Clarendon, Oxford 1992)

    Google Scholar 

  11. M. Tischer, D. Arvanitis, T. Yokoyama, T. Lederer, L. Tröger, K. Baberschke: Surf. Sci.307–309, 1096 (1993)

    Google Scholar 

  12. C. Rau, H. Huffner: J. Magn. Magn. Mater,54–57, 767 (1986)

    Google Scholar 

  13. C.A. Ballantine, R.L. Fink, J. Araya-Pochet, J.L. Erskine: Phys. Rev. B41, 2631 (1990)

    Google Scholar 

  14. F. Huang, G.J. Mankey, M.T. Kief, R.F. Willis: J. Appl. Phys.73, 6760 (1993), Phys. Rev. B49, 3962 (1994)

    Google Scholar 

  15. M. Tischer: Dissertation, FU Berlin (1995) (unpublished)

  16. U. Stetter, M. Farle, K. Baberschke, W.G. Clark: Phys. Rev. B45, 503 (1992)

    Google Scholar 

  17. U. Stetter, A. Aspelmeier, K. Baberschke: J. Magn. Magn. Mater.117, 183 (1992)

    Google Scholar 

  18. M. Farle, K. Baberschke, U. Stetter, A. Aspelmeier, F. Gerhardter: Phys. Rev. B47, 11571 (1993)

    Google Scholar 

  19. R. Nickel: Diploma Thesis, FU Berlin (1995) (unpublished)

  20. Following the relation µ = 1 + χ, we use χ in dimensionless (SI) units. However, care must be taken in defining the anisotropyK (Sect. 2). The literature uses the cgs system. In (5a), we write for the demagnetizing fieldNM (SI units), but in (9), we follow the literature and use 4πNM (cgs units)

  21. A. Aspelmeier, F. Gerhardter, K. Baberschke: J. Magn. Magn. Mater.132, 22 (1994)

    Google Scholar 

  22. E.D. Tober, R.X. Ynzunza, C. Westphal, C.S. Fadley: Preprint (1995)

  23. P.A. Beck: Solid State Commun.34, 581 (1980)

    Google Scholar 

  24. P.A. Beck: Phys. Rev. B23, 2290 (1981)

    Google Scholar 

  25. A. Aspelmeier, M. Tischer, M. Farle, M. Russo, K. Baberschke, D. Arvanitis: J. Magn. Magn. Mater.146, 256 (1995)

    Google Scholar 

  26. P.J. Jensen, H. Dreyssé, K.H. Bennemann: Surf. Sci.269/270, 627 (1992)

    Google Scholar 

  27. L.H. Tjeng, Y.U. Ydzerda, P. Rudolf, F. Sette, C.T. Chen: J. Magn. Magn. Mater.109, 288 (1992)

    Google Scholar 

  28. B. Schulz, R. Schwarzwald, K. Baberschke: Surf. Sci.307/309, 1102 (1994)

    Google Scholar 

  29. Landolt-Börnstein, Vol. III/19a, ed. by H.P.J. Wijn (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  30. See, for example: S. Chikazumi, S.H. Charap:Physics of Magnetism (Wiley, New York 1964)

    Google Scholar 

  31. Only single-domain phenomena are discussed. This is the actual case for ultrathin films. For multidomain effects see literature, e.g. Ref. [28]

  32. B. Coqblin:The Electronic Structure of Rare-Earth Metals and Alloys: The Magnetic Heavy Rare-Earth (Academic, New York 1977)

    Google Scholar 

  33. A. Berghaus, M. Farle, Yi Li, K. Baberschke: InMagnetic Properties of Low-Dimensional Systems II, ed. by L.M. Falicov, F. Mejia-Lira, J.L. Moran-Lopez, Springer Proc. Phys., Vol. 50 (Springer, Berlin, Heidelberg 1990) p. 61

    Google Scholar 

  34. B. Schulz: Dissertation, FU Berlin (1995) (unpublished)

  35. B. Schulz, K. Baberschke: Phys. Rev. B50, 13467 (1994)

    Google Scholar 

  36. R. Jungblut, M.T. Johnson, J. de Stegge, A. Reinders, F.J.A. den Broeder: J. Appl. Phys.75, 6424 (1994)

    Google Scholar 

  37. S. Müller, B. Schulz, G. Kostka, M. Earle, K. Heinz, K. Baberschke: Surf. Sci. (in press 1996)

  38. T.H. Moos, W. Hubner, K.H. Bennemann: Preprint (1995)

  39. C. Kittel, J.H. van Vleck: Phys. Rev.118, 1231 (1960)

    Google Scholar 

  40. E. Callen, H.B. Callen: Phys. Rev.139, A455 (1965)

    Google Scholar 

  41. G. André, A. Aspelmeier, B. Schulz, M. Earle, K. Baberschke: Surf. Sci.326, 275 (1995)

    Google Scholar 

  42. Yi Li: Dissertation, FU Berlin (1991) (unpublished)

  43. E. Kneller:Ferromagnetismus (Springer, Berlin, Heidelberg 1962)

    Google Scholar 

  44. M. Blume, S. Geschwind, Y. Yafet: Phys. Rev.181, 478 (1969)

    Google Scholar 

  45. A.J.P. Meyer, G. Asch: J. Appl. Phys.32, 330 (1961)

    Google Scholar 

  46. P. Carra, B. Thole, M. Altarelli, X. Wang: Phys. Rev. Lett.70, 694 (1993)

    Google Scholar 

  47. F.M.F. de Groot: J. Electron Spectrosc. Relat. Phenom.67, 529 (1994)

    Google Scholar 

  48. J. Hunter Dunn, D. Arvanitis, N. Mårtensson, M. Tischer, F. May, M. Russo, K. Baberschke: J. Phys. Condens. Matter7, 1111 (1995)

    Google Scholar 

  49. F. Schreiber, J. Pflaum, Z. Frait, Th. Mühge, J. Pelzl: Solid State Commun.33, 965 (1995)

    Google Scholar 

  50. M. Tischer, O. Hjortstam, D. Arvanitis, J. Hunter Dunn, F. May, K. Baberschke, J. Trygg, J. M. Wills, B. Johansson, O. Eriksson: Phys. Rev. Lett.75, 1602 (1995)

    Google Scholar 

  51. F. May, M. Tischer, D. Arvanitis, M. Russo, J. Hunter Dunn, H. Henneken, H. Wende, R. Chauvistré, N. Mårtensson, K. Baberschke: Phys. Rev. B53, 1076 (1996)

    Google Scholar 

  52. W.L. O'Brien, B.P. Termer: Phys. Rev. B49, 15370 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baberschke, K. The magnetism of nickel monolayers. Appl. Phys. A 62, 417–427 (1996). https://doi.org/10.1007/BF01567112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01567112

PACS

Navigation