Skip to main content
Log in

Scaling and performance of CO2 lasers at supra-atmospheric pressure

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The performance of a compact uv photo-preionized TE laser is studied in the pressure range 1–5 bar. As the pressure is increased, the laser pulse shape is little altered, but both the peak power and the total output pulse energy increase significantly with pressure, even for constant input electrical energy. For various gas mixtures and excitation source capacitors the measurements suggest approximate output energy scaling with the product of the source charge per unit electrode area [C.m−2] and the molecular partial pressure [CO2+N2+CO]. This is explained in terms of the pressure-dependent discharge impedance. An input-energy-related discharge instability limits the optimum laser pressure to 1.5–2.5 bar, and we show that, at constant input energy, the instability boundary depends on the molecular partial pressure alone. The pre-ionization photo-electron yield varies negligibly with pressure, but the discharge tolerance to added oxygen decreases asp −3 top −4, dependent on gas mixture. Nevertheless sealed operation for >105 shots has been obtained with a 5% CO2∶5% CO∶3% N2∶2% H2∶85% He gas mixture at a total pressure of 5 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Midorikawa, K. Wakanayashi, M. Obara, T. Fujioka: Rev. Sci. Instrum.53, 449 (1982)

    Google Scholar 

  2. B. Norris, A.L.S. Smith: Appl. Phys. Lett.34, 385 (1979)

    Google Scholar 

  3. A.L.S. Smith, J.P. Sephton, G. Scott: J. Phys. E.17, 590 (1984)

    Google Scholar 

  4. A.L.S. Smith, J. Mellis: Appl. Phys. Lett.41, 1037 (1982)

    Google Scholar 

  5. G. Wiederhold, K.H. Donnerhacke: Sov. J. QE-6, 474 (1976)

    Google Scholar 

  6. E.J. McLellan, C.C. Findley, J. Roberts: SPIE227, 23 (1980)

    Google Scholar 

  7. S.J. Scott, A.L.S. Smith: Appl.Phys. Lett.41, 783 (1982)

    Google Scholar 

  8. S.J. Scott, A.L.S. Smith: Appl. Phys. B33, 99 (1984)

    Google Scholar 

  9. R.V. Babcock, I. Liberman, W.D. Partlow: IEEE J. QE-12, 29 (1976)

    Google Scholar 

  10. A.J. Palmer: Appl. Phys. Lett.25, 138 (1974)

    Google Scholar 

  11. V.N. Karnyushin, R.I. Soloukhin: Sov. Phys. Dokl.22, 521 (1977)

    Google Scholar 

  12. V.N. Karnyushin, A.N. Malov, R.I. Soloukhin: Sov. J. QE-8, 319 (1978)

    Google Scholar 

  13. J.I. Levatter, S.-C. Lin: J. Appl. Phys.51, 210 (1980)

    Google Scholar 

  14. G. Herziger, R. Wollermann-Windgasse, K.H. Banse: Appl. Phys.24, 267 (1981)

    Google Scholar 

  15. A.L.S. Smith: In Lasers (Physics, Systems and Techniques), SUSSP 235 (1983)

  16. A.L.S. Smith, B. Norris: J. Phys. D11, 1949 (1978)

    Google Scholar 

  17. H. Shields, A.L.S. Smith, B. Norris: J. Phys. D9, 1587 (1976)

    Google Scholar 

  18. V.S. Alienikov, Yu.F. Bondarenko, V.V. Zubov, G.S. Starikova, V.K. Sysoev: Sov. J. QE-11, 227 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.L.S., Mellis, J. Scaling and performance of CO2 lasers at supra-atmospheric pressure. Appl. Phys. B 37, 171–179 (1985). https://doi.org/10.1007/BF00692081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692081

PACS

Navigation