Skip to main content
Log in

Amplification and saturation in a CO2 waveguide amplifier

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An ir CO2, dc current pumped, optical waveguide (WG) amplifier has been built, and its active medium optical parameters measured for several CO2 emission lines, and their dependence from active medium total pressure, discharge current and temperature was investigated.

High gain is found which, coupled with relatively high saturation power in the WG fundamental mode and ease of fabrication with this technology in long (up to 1.5 m) lengths, indicates promising use to efficiently amplify high spectral and spatial purity output of a short, highly tunable WG laser up to power levels suited for nonlinear spectroscopy and optical pumping. The dependence of the small signal gain coefficient and of the saturation parameter for individual rotational lines on the radiation intensity was computed using experimentally known parameters of the discharge plasma. The computation was carried out using the two mode rate equation approach for CO2−N2−He gas mixtures. A satisfactory agreement between theoretical and experimental results was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ioli, G. Moruzzi, F. Strumia: Lett. Nuovo Cimento28, 257–264 (1980)

    Google Scholar 

  2. F. Strumia, N. Ioli: “High Power, Tunable Waveguide CO2 Lasers”, inPhysics of New Lasers Sources, ed. by N. Abrahms, NATO-ASI Series (Plenum, New York) (in press)

  3. M. Inguscio, N. Ioli, A. Moretti, G. Moruzzi, F. Strumia: Opt. Commun.37, 211–216 (1981)

    Google Scholar 

  4. N. Ioli, A. Moretti, M. Pellegrino, F. Strumia: Development of WG CO2 Lasers and Their use in Molecular Spectroscopy, Proc. 4th Nat. Conf. on Quantum Electronics and Plasmas, Capri, Italy (May 1984) (in press)

  5. R.L. Abrams: IEEE J. QE-8, 838–843 (1972)

    Google Scholar 

  6. D.R. Hall, E.K. Gorton, R.M. Jenkins: J. Appl. Phys.48, 1212–1216 (1977)

    Google Scholar 

  7. E.A.J. Marcatili, R.A. Schmeltzer: Bell. Syst. Techn. J.43, 1783–1809 (1964)

    Google Scholar 

  8. M.L. Lang, W.L. Wolfe: Appl. Opt.9, 1267–1268 (1983)

    Google Scholar 

  9. W.W. Rigrod: J. Appl. Phys.36, 2487–2490 (1965)

    Google Scholar 

  10. R.L. Abrams: Appl. Phys. Lett.25, 609–611 (1974)

    Google Scholar 

  11. P.K. Cheo: “CO2 Lasers” inLasers 3, 185 (Dekker, New York 1971)

    Google Scholar 

  12. C.P. Christensen, C. Freed, H.A. Hans: IEEE J. QE-5, 276–283 (1969)

    Google Scholar 

  13. H. Sato, Y. Miura: IEEE J. QE-19, 410–416 (1983)

    Google Scholar 

  14. L.E. Freed, C. Fred, R.G. O'Donnell: IEEE J. QE-18, 1229–1236 (1982)

    Google Scholar 

  15. N. Ioli, F. Strumia: Final Report of “Progetto Finalizzato Laser di Porenza” Italian National Council of Research (C.N.R.) (in press)

  16. A. Stein: IEEE J. QE-18, 1321–1322 (1982)

    Google Scholar 

  17. M.W. Scott, G.D. Myers: Appl. Opt.23, 2874–2878 (1984)

    Google Scholar 

  18. R. Benedetti, T. Colombo, F. Strumia: Lett. Nuovo Cimento22, 167–172 (1978)

    Google Scholar 

  19. V.N. Varakin, V.Ya. Panchenko: Sov. J. Appl. Mech. Techn. Phys.21, 6–14 (1980)

    Google Scholar 

  20. A.S. Biryukov, B.F. Gordietz: Sov. J. Appl. Mech. Techn. Phys.6, 787–793 (1972)

    Google Scholar 

  21. B.F. Gordietz, A.I. Osipov, L.A. Shelepin:Kineticheskie processii v gasakhi molekylevarnii laserii (kinetic processes in gases and molecular lasers) (Nauka, Moskva 1980)

    Google Scholar 

  22. B.F. Gordietz, N.N. Sobolev, L.A. Shelepin: Sov. Phys. JETP26, 1039–1045 (1968)

    Google Scholar 

  23. O.P. Judd: J. Appl. Phys.45, 4572–4575 (1974)

    Google Scholar 

  24. E.S. Gasilevich, V.A. Ivanov, A.N. Lotkova, V.N. Ochkin, N.N. Sobolev, N.G. Yaroslavskiy: Sov. Phys.-Tech. Phys.39, 126–135 (1969)

    Google Scholar 

  25. S.C. Cohen: IEEE J. QE-12, 237–244 (1976)

    Google Scholar 

  26. A.M. Sinitsyn: Sov. J. Quantum Electron.8, 1230–1233 (1978)

    Google Scholar 

  27. V.V. Grigor'yants, B.A. Kuzyakov, A.M. Sinitsyn: Sov. J. Quantum Electron.9, 158–162 (1979)

    Google Scholar 

  28. G. Hirschfelder, C. Curtiss, R. Byrd:Molecular Theory of Gases and Liquids (Wiley, New York 1964)

    Google Scholar 

  29. CRC Handbook of Chem. Phys., 52nd (Chemical Rubber Company, Cleveland, Ohio 1971)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by G.N.S.M.-C.N.R. and M.P.I.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioli, N., Panchenko, V., Pellegrino, M. et al. Amplification and saturation in a CO2 waveguide amplifier. Appl. Phys. B 38, 23–30 (1985). https://doi.org/10.1007/BF00691766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691766

PACS

Navigation