Skip to main content
Log in

An integrated organic photoconductive detector for optoelectronics

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In the system (poly-(N-vinyl carbazole) (PVK): trinitrofluorenone (TNF) a photoconductive complex is formed. Thin metal films are sputtered on BK7 glass substrates, forming two electrodes with 1 mm separation. The photoconductive complex is deposited from a solution in chlorobenzene/tetrahydrofurane on the glass substrate between the electrodes, forming a photoconductive detector. Photoconductivity of these planar detectors is studied using He-Ne laser light (λ=633 nm) as a function of electric field and for different TNF concentrations. An increase of photosensitivity is found for high TNF concentrations.

Time resolution of the photoconductive PVK:TNF detector is investigated using a ruby pulse laser (λ=694 nm). The possible use of such detectors in combination with other polymer lightguides is demonstrated. Compared to most polymer waveguide materials PVK exhibits a rather high refractive index ofn=1.7. Thus the coupling of light into the photoconductive film is achieved directly. The planar structure allows further integration of polymeric components for optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Ostrowsky, R. Poirier, L.M. Reiber, C. Deverdun: Appl. Phys. Lett.22, 463 (1973)

    Google Scholar 

  2. K. Nishida, K. Tayuchi, Y. Matsumoto: Appl. Phys. Lett.35, 251 (1979)

    Google Scholar 

  3. S. Chandrasekhar, J.C. Campbell, A.G. Dentai, G.J. Qua: Electron. Lett.23, 501 (1987)

    Google Scholar 

  4. P.R. Smith, D.H. Auston, A.M. Johnson: Rev. Sci. Instrum.52, 138 (1980)

    Google Scholar 

  5. H. Hoegl: J. Phys. Chem.69, 755 (1965)

    Google Scholar 

  6. W.D. Gill: “Polymeric Photoconductors” inPhotoconductivity and Related Phenomena, ed. by J. Mort, D.M. Pai (Elsevier, New York 1976)

    Google Scholar 

  7. M. Lardon, E. Lell-Döller, J.W. Weigl: Mol Cryst.2, 241 (1967)

    Google Scholar 

  8. G. Weiser: J. Appl. Phys.43, 5028 (1972)

    Google Scholar 

  9. D.M. Pai: J. Chem. Phys.52, 2285 (1970)

    Google Scholar 

  10. W.D. Gill: J. Appl. Phys.43, 5033 (1972)

    Google Scholar 

  11. J. Frenkel: Phys. Rev.54, 647 (1938)

    Google Scholar 

  12. R. Bube: “Photoconductivity in Polycrystalline Films” inPhotoconductivity and Related Phenomena, ed. by J. Mort, D.M. Pai (Elsevier, New York 1976)

    Google Scholar 

  13. C. Wu, R.H. Bube: J. Appl. Phys.45, 648 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, R., Franke, H. An integrated organic photoconductive detector for optoelectronics. Appl. Phys. B 48, 219–224 (1989). https://doi.org/10.1007/BF00694348

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694348

PACS

Navigation