Skip to main content
Log in

Respiratory adaptations of a fossorial mammal, the pocket gopher (Thomomys bottae)

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Fossorial rodent burrows exhibit relatively stable environmental conditions with regard to light, y. However, vastly different concentrations of CO2 and O2 are encountered in these burrows. Field observations of shallow pocket gopher burrows (Thomomys bottae) reveal CO2 concentrations to 3.8%, and O2 concentrations from 15.5% to 20.5% (Darden, 1970). Values similar to these have been reported for another genus of gopher,Geomys, by Kennerly (1964) and McNab (1966).

  2. 2.

    The sensitivity of the respiratory control mechanisms of the pocket gopher (T. bottae) O2 was tested and expressed as percent increase in minute volume as a function of the level of inspired CO2 (2% to 8%). The CO3 response curve is markedves for other terrestrial and diving mammals (Figs. 1 and 3).

  3. 3.

    Except for a reduction in slope, the respiratory response to CO2 of gophers can be described as similar to that recorded for humans. Carbon dioxide stimulates both increased ventilatory frequency and tidal volume in a near linear fashion. Individual difference in CO2 sensitivity among gophers was demonstrated (Table 2).

  4. 4.

    The level of alveolar CO2 (P A,CO2) in anesthetized pocket gophers is not significantly altered from values normally observed in man at sea level (Table 4). The reduced ventilatory response is due to a reduction in the slope of the response curve. The possible causes for the decreased sensitivity are discussed.

  5. 5.

    Comparisons of predicted and observed values of tidal volume (V T), rate of ventilation (f), minute volume (\(\dot V_{\min } \)) and respiratory dead space (V D) were made (Table 3). Of these,V D and f and consequently\(\dot V_{\min } \) were smaller than expected. The reduced value ofV D offsets the low\(\dot V_{\min } \) and thus alveolar ventilation (\(\dot V_A \)) is only slightly lower than expected. The possible biological significance of the alterations in f andV D are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amdur, M. O., Mead, J.: Mechanics of respiration in unanesthetized guinea pigs. Amer. J. Physiol.192, 364–368 (1958).

    Google Scholar 

  • Andersen, H. T.: Physiological adaptations in diving vertebrates. Physiol. Rev.46, 217–243 (1966).

    Google Scholar 

  • Asmussen, E.: Muscular exercise. In: W. O. Fenn and H. Rahn [eds.], Handbook of physiology, sect. 3, Respiration, vol. 2, p. 939–978. Washington, D. C.: Amer. Physiol. Soc. 1965.

    Google Scholar 

  • Augee, M. L., Elsner, R. W., Gooden, B. A., Wilson, P. R.: Respiratory and cardiac responses of a burrowing animal, the echidna. Resp. Physiol.11, 327–334 (1971).

    Google Scholar 

  • Bentley, P. J., Herreid II, C. F., Schmidt-Nielsen, K.: Respiration of a monotreme, the echidna,Tachyglossus aculeatus. Amer. J. Physiol.212, 957–961 (1967).

    Google Scholar 

  • Bouhuys, A.: Respiratory dead space. In: W. O. Fenn and H. Rahn [eds.], Handbook of physiology, sect. 3, Respiration, vol. 1, p. 699–714. Washington, D. C.: Amer. Physiol. Soc. 1964.

    Google Scholar 

  • Bradley, A. F., Stupfel, M., Severinghaus, J. W.: Effect of temperature onP CO2 andp o2 of bloodin vitro. J. appl. Physiol.9, 201–204 (1956).

    Google Scholar 

  • Carlson, L. D.: Gas exchange and transportation. In: T. C. Rugh and J. F. Fulton [eds.], Medical physiology and biophysics, p. 789–812. Philadelphia-London: W. B. Saunders 1960.

    Google Scholar 

  • Cei, G.: Ortogenesi parallela e degradazione degli organi della vista negli Spalacidi. Monit. zool. ital.55, 69–88 (1946).

    Google Scholar 

  • Chapin, J. L.: Ventilatory response of unrestrained and unanesthetized hamster to CO2. Amer. J. Physiol.179, 146–148 (1954).

    Google Scholar 

  • Cherniack, R. M.: Work of breathing and the ventilatory response to CO2. In: W. O. Fenn and H. Rahn [eds.], Handbook of physiology, sect. 3, Respiration, vol. 2, p. 1469–1474. Washington, D. C.: Amer. Physiol. Soc. 1965.

    Google Scholar 

  • Comroe, J. H., Jr.: Physiology of respiration. Chicago: Yearbook Medical Publ. Inc. 1965.

    Google Scholar 

  • Comroe, J. H., Jr., Foster, R. E., Dubois, A. B., Briscoe, W. A., Carlsen, E.: The lung: Clinical physiology and pulmonary function tests. Chicago: Year Book Medical Publ., Inc. 1962.

    Google Scholar 

  • Darden, T. R.: Respiratory adaptations of a fossorial mammal, the pocket gopher (Thomomys bottae). Ph. D. thesis, Univ. of Calif., Davis, 1970.

    Google Scholar 

  • Davis, W. B.: Distribution and variation of pocket gophers (genusGeomys) in southwestern United States. Tex. Agric. Exper. Sta. Bull.590, 1–38 (1940).

    Google Scholar 

  • Dejours, P.: Respiration (Transi, by L. E. Farhi). New York: Oxford Univ. Press 1966.

    Google Scholar 

  • Dejours, P., Puccinelli, R., Armand, J., Dicharry, M.: Concept and measurement of ventilatory sensitivity to CO2. J. appl. Physiol.20, 890–897 (1965).

    Google Scholar 

  • Drorbaugh, J. E., Fenn, W. O.: A barometric method of measuring ventilation in newborn infants. Pediatrics16, 81–87 (1955).

    Google Scholar 

  • Eger, E., Kellogg, R., Mines, A., Lima-Ostors, M., Morrill, C., Kent, D.: Influence of CO2 on ventilatory acclimtization to altitude. J. appl. Physiol.24, 607–615 (1968).

    Google Scholar 

  • Ellerman, J. R.: The subterranean mammals of the world. Trans. Roy. Soc. S. Africa35, 11–20 (1956).

    Google Scholar 

  • Eloff, G.: The functional and structural degradation of the eye of the South African rodent moles,Cryptomys bigalkd andBathyergus maritimus. S. Africa. J. Sci.54, 293–302 (1958).

    Google Scholar 

  • Fritts, H. W., Jr., Filler, J., Fishman, A. P., Cournand, A.: The efficiency of ventilation during voluntary hyperpnea. J. clin. Invest.38, 1339–1348 (1959).

    Google Scholar 

  • Goldstein, B.: Burrowing mechanisms in some fossorial mammals. Ph. D. thesis, Univ. Calif., Davis 1968.

    Google Scholar 

  • Guyton, A. C.: Analysis of respiratory patterns in laboratory animals. Amer. J. Physiol.150, 78–83 (1947).

    Google Scholar 

  • Haywood, D., Bloete, M.: Respiratory responses of healthy young women to CO2 inhalation. J. appl. Physiol.27, 32–35 (1969).

    Google Scholar 

  • Hoffmeister, D. F.: The species problem in theThomomys bottae-Thomomys umbrinus complex of pocket gophers in Arizona. In: J. K. Jones [ed] Contributions in Mammalogy, Univ. Kans. Mus. Nat. Hist., Miscel. Pub.51, 75–92 (1969).

  • Honda, Y.: Ventilatory response to CO2 during hypoxia and hyperoxia in awake and anesthetized rabbits. Resp. Physiol.5, 279–287 (1968).

    Google Scholar 

  • Howard, W. E., Childs, H. E., Jr.: Ecology of pocket gophers with emphasis onThomomys bottae mewa. Hilgardia29, 277–358 (1959).

    Google Scholar 

  • Irving, L.: The insensitivity of diving mammals to CO2. Amer. J. Physiol.124, 729–734 (1938).

    Google Scholar 

  • Irving, L., Peyton, L. J., Monson, M.: Metabolism and insulation of swine as bare-skinned mammals. J. appl. Physiol.9, 421–442 (1956).

    Google Scholar 

  • Irving, L., Scholander, P. F., Grinnell, S. W.: The respiration of the porpoise,Tursiops truncatus. J. cell. comp. Physiol.17, 145–168 (1941).

    Google Scholar 

  • Kennerly, T. E., Jr.: Microenvironmental conditions of the pocket gopher burrow. Tex. J. Sci.16, 395–441 (1964).

    Google Scholar 

  • Kellogg, R. H.: Acclimatization to CO2. Anesthesiology.21, 634–641 (1960).

    Google Scholar 

  • Lambertsen, C. J.: CO2 and respiration in acid-base homeostasis. Anesthesiology21, 642–651 (1960).

    Google Scholar 

  • McNab, B. K.: The metabolism of fossorial rodents: a study of convergence. Ecology47, 712–733 (1966).

    Google Scholar 

  • Mead, J.: Control of respiratory frequency. J. appl. Physiol.15, 325–336 (1960).

    Google Scholar 

  • Miller, R. S.: Ecology and distribution of pocket gophers (Geomyidae) in Colorado. Ecology45, 256–272 (1964).

    Google Scholar 

  • Milic-Emili, G., Petit, J. M.: Mechanical efficiency of breathing. J. appl. Physiol.15, 359–362 (1960).

    Google Scholar 

  • Mitchell, R. A.: Cerebrospinal fluid and the regulation of respiration. In: C. G. Caro [ed.], Advances in respiratory physiology, p. 1–47. Baltimore: Williams & Wilkins 1966.

    Google Scholar 

  • Parer, J. T., Metcalfe, J.: Respiratory studies of monotremes II. Blood of the echidna (Tachyglossus setosus). Resp. Physiol.3, 143–150 (1967a).

    Google Scholar 

  • Parer, J. T., Metcalfe, J.: Respiratory studies of monotremes III. Blood gas transport and hemodynamics in the unanesthetized echidna. Resp. Physiol.3, 151–159 (1967b).

    Google Scholar 

  • Rahn, H., Fenn, W. O.: A graphical analysis of respiratory gas exchange: the O2-CO2 diagram. Washington, D. C.: Amer. Physiol. Soc. 1955.

    Google Scholar 

  • Robin, E. D., Murdaugh, H. V., Jr., Pyron, W., Weiss, E., Soteres, P.: Adaptations to diving in the harbor seal-gas exchange and ventilatory response to CO2. Amer. J. Physiol.205, 1175–1177 (1963).

    Google Scholar 

  • Schaefer, K. E.: Respiratory pattern and respiratory response to CO2. J. appl. Physiol.13, 1–14 (1958).

    Google Scholar 

  • Schaefer, K. E.: A concept of triple tolerance limits based on chronic CO2 toxicity studies. Aerospace Med.32, 197–204 (1961).

    Google Scholar 

  • Schaefer, K. E., Hastings, B. J., Carey, C. R., Nichols, G.: Respiratory acclimatization to CO2. J. appl. Physiol.18, 1071–1078 (1963).

    Google Scholar 

  • Scholander, P. F.: Analyzer for accurate estimation of the respiratory gases in one half cubic centimeter samples. J. biol. Chem.167, 235–250 (1947).

    Google Scholar 

  • Scholander, P. F., Irving, L.: Experimental investigations on the respiration and diving of the Florida manatee. J. cell. comp. Physiol.17, 169–191 (1941).

    Google Scholar 

  • Scholander, P. F., Irving, L., Grinnell, S. W.: Respiration of the armadillo with implications to its burrowing ability. J. cell. comp. Physiol.21, 53–63 (1943).

    Google Scholar 

  • Severinghaus, J., Stupfel, M., Bradley, A.: Accuracy of blood pH andP CO2 determinations. J. appl. Physiol.9, 189–196 (1956).

    Google Scholar 

  • Stahl, W. R.: Scaling of respiratory variables in mammals. J. appl. Physiol.22, 453–560 (1967).

    Google Scholar 

  • Tenney, S. M., Lamb, T. W.: Physiological consequences of hypoventilation and hyperventilation. In: W. O. Fenn and H. Rahn [eds.], Handbook of physiology, sect. 3, Respiration, vol. 2, p. 979–1010. Washington, D. C.: Amer. Physiol. Soc. 1965.

    Google Scholar 

  • Tenney, S. W., Bartlett, D., Jr.: Comparative quantitative morphology of the mammalian lung: trachea. Resp. Physiol.3, 130–135 (1967).

    Google Scholar 

  • Walker, E. P.: Mammals of the world, 2 vol. Baltimore: Johns Hopkins Press 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I would like to express my appreciation to Drs. Ray E. Burger, Jerry R. Gillespie and Robert L. Rudd for their invaluble guidance throughout this work. Drs. Ann E. Kammer, George W. Salt and Robert G. Schwab facilitated experimentation by allowing generous use of their equipment. Dr. Donald S. Farner critically read the manuscript. Much of this work is embodied in a dissertation submitted to the Graduate School of the University of California in partial fufillment of the requirements for the Ph. D. degree. Partial financial assistance was provided by the Devis Campus, Chancellor's Patent fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darden, T.R. Respiratory adaptations of a fossorial mammal, the pocket gopher (Thomomys bottae). J. Comp. Physiol. 78, 121–137 (1972). https://doi.org/10.1007/BF00693609

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00693609

Keywords

Navigation