Skip to main content
Log in

The scatter of intracellular ionic concentration in the lobster circumesophageal axon

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The intracellular potassium and sodium concentrations of the lobster circumesophageal axon was measured with an ultramicro integrative flame photometer. The average concentration of 376.1 mM/l vol for potassium and 63.8 mM/l vol for sodium that was determined was correlated with electrophysiological data. The large scatter of the concentration in individual axons is compared with measurements by other investigators and is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brinley, F. J., Jr.: Sodium, potassium, and chloride concentration and fluxes in the isolated giant axons ofHomarus. J. Neurophysiol.28, 742–772 (1965).

    Google Scholar 

  • Caldwell, P. C., Keynes, R. D.: The permeability of the squid giant axon to radioactive potassium and chloride ions. J. Physiol. (Lond.)154, 177–189 (1960).

    Google Scholar 

  • Curtis, H. J., Cole, K. S.: Membrane resting and action potentials from the squid giant axon. J. cell. comp. Physiol.19, 135–144 (1942).

    Google Scholar 

  • Dalton, J. C.: Effects of external ions on membrane potentials of a lobster giant axon. J. gen. Physiol.41, 529–542 (1958).

    Google Scholar 

  • Dalton, J. C., Hendrix, D. E.: Effects of temperature on membrane potentials of lobster giant axon. Amer. J. Physiol.202, 491–494 (1962).

    Google Scholar 

  • Freeman, A. R.: Electrophysiological activity of the tetrodotoxin on the resting membrane of the squid giant axon. Comp. Biochem. Physiol.40 A, 71–82 (1971).

    Google Scholar 

  • Freeman, A. R., Brandt, P. W., Reuben, J. P.: Comparison of membrane characteristics as revealed by osmotic studies on isolated lobster and squid axons. Fed. Proc.24, 648 (1965).

    Google Scholar 

  • Freeman, A. R., Reuben, J. P., Brandt, P. W., Grundfest, H.: Osmometrically determined characteristics of the cell membrane of squid and lobster giant axons. J. gen. Physiol.50, 423–445 (1966).

    Google Scholar 

  • Goldman, D. E.: Potential, impedance, and rectification in membranes. J. gen. Physiol.27, 37–60 (1943).

    Google Scholar 

  • Grundfest, H.: The nature of electrochemical potentials of biological tissues. In: Electrochemistry in biology and medicine (editor T. Shedlovsky), p. 141–166. New York: John Wiley & Sons 1955.

    Google Scholar 

  • Grundfest, H., Kao, C. Y., Altamirano, M.: Bioelectric effects of ions microinjected into the giant axon ofLoligo. J. gen. Physiol.38, 245–282 (1954).

    Google Scholar 

  • Hinke, J. A. M.: Measurement of sodium and potassium activities in the squid axon by means of cation-selective glass micro-electrodes. J. Physiol. (Lond.)156, 314–335 (1961).

    Google Scholar 

  • Hodgkin, A. L., Horowicz, P.: The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. (Lond.)148, 127–160 (1959).

    Google Scholar 

  • Hodgkin, A. L., Katz, B.: Effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.)108, 37–77 (1949).

    Google Scholar 

  • Hodgkin, A. L., Keynes, R. D.: Active transport of cations in giant axons fromSepia andLoligo. J. Physiol. (Lond.)128, 28–60 (1955).

    Google Scholar 

  • Jenerick, H. P.: Muscle membrane potential, resistance and external potassium chloride. J. cell. comp. Physiol.42, 427–448 (1953).

    Google Scholar 

  • Julian, F. J., Moore, J. W., Goldman, D. E.: Membrane potential of the lobster giant axon obtained by use of the sucrose gap technique. J. gen. Physiol.45, 1195–1216 (1962a).

    Google Scholar 

  • Julian, F. J., Moore, J. W., Goldman, D. E.: Current voltage relations in the lobster giant axon membrane under voltage clamp conditions. J. gen. Physiol.45, 1217–1238 (1962b).

    Google Scholar 

  • Katz, G. M.: Another look at ultramicrointegrative flame photometry. Analyt. Biochem.26, 381–397 (1968).

    Google Scholar 

  • Keynes, R. D., Lewis, P. R.: The sodium and potassium content of cephalopod nerve fibres. J. Physiol. (Lond.)114, 151–182 (1951).

    Google Scholar 

  • Koechlin, B. A.: On the chemical composition of the axoplasm of squid giant nerve fibres with particular reference to its ion pattern. J. biophys. biochem. Cyto.1, 511–529 (1955).

    Google Scholar 

  • Ling, G. N.: The role of phosphate in the maintenance of the resting potential and selective ionic accumulation in frog muscle cells. In: Phosphorus metabolism, II (editors, W. D. McElroy and B. Glass), p. 748–797. Baltimore: The Johns Hopkins Press 1952.

    Google Scholar 

  • Shaw, F. H., Simon, S. E., Johnstone, B. M.: The non-correlation of bioelectric potentials with ionic gradients. J. gen. Physiol.40, 1–17 (1956a).

    Google Scholar 

  • Shaw, F. H., Simon, S. E., Johnstone, B. M., Holman, M. E.: The effects of changes in environment on the electrical and ionic patterns in muscle. J. gen. Physiol.40, 263–288 (1956b).

    Google Scholar 

  • Steinbach, H. B., Spiegelman, S.: The sodium and potassium balance in squid nerve axoplasm. J. cell. comp. Physiol.22, 187–196 (1943).

    Google Scholar 

  • Tomita, T., Wright, E. B.: A study of the crustacean axon repetitive response: I. The effect of membrane potential and resistance. J. cell comp. Physiol.65, 195–209 (1965).

    Google Scholar 

  • Wright, E. B., Reuben, J. P.: A comparative study of some excitability properties of the giant axons of the ventral nerve cord of the lobster including the recovery of excitability following an impulse. J. cell. comp. Physiol.51, 12–28 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of the Laboratory of Neurophysiology is supported in part by grants from the Muscular Dystrophy Associations of America; by Public Health Service Research Grants (NB 03728) and Training Grant (NB 05328), from the National Institute of Neurological Diseases and Stroke; and from the National Science Foundation (GB 6988X). Dr. Freeman was a Postdoctoral Trainee Fellow In Neurophysiology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, G.M., Freeman, A.R. The scatter of intracellular ionic concentration in the lobster circumesophageal axon. J. Comp. Physiol. 81, 89–98 (1972). https://doi.org/10.1007/BF00693552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00693552

Keywords

Navigation