Skip to main content
Log in

Intersite characterization and variability of soil respiration in different arable and forest soils

  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Summary

Soil respiration was investigated in three loamy Orthic Luvisols (two arable, one forest soil), three sandy Haplic Podzols (also two arable, one forest soil) with a modified intersite method according to Lundegardh (1924). The method allows characterization of the CO2-flux from the soil and interpretation of the different levels with regard to temperature, nutrient and air supply. The method is sensitive to tillage and fertilization effects. In the two arable Luvisols the mean cumulative respiration rate was not uniform compared with the forest soil; in one case it was much higher and in another much lower. CO2 evolution in the Podzol under spruce was much lower than in the two arable Podzols. In the sandy Podzols 5 replicate measurements gave adequate results, with an error probability of 10%, but in the loamy Luvisols it was necessary to use 10 replicates to specify the same degree of difference. If soil respiration is very high, immediately after fertilization with cattle slurry or dung on arable land, or after litterfall in a deciduous forest, more replicates are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JPE (1982) Soil respiration. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: 2. Chemical and microbiological properties. Am Soc Agron, Madison, Wisconsin, pp 467–476

    Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Google Scholar 

  • Beck T (1986) Aussagekraft und Bedeutung enzymatischer und mikrobiologischer Methoden bei der Charakterisierung des Bodenlebens von landwirtschaftlichen Böden. Veroeff Landwirtsch Chem Bundesanst Linz/Donau 18:75–100

    Google Scholar 

  • Beyer L (1989) Nutzungseinfluss auf die Stoffdynamik schleswigholsteinischer Böden — Humusdynamik und mikrobielle Aktivität. Schriften Inst Pflanzenernaehr Bodenkd Uni Kiel 6

  • Beyer L (1990) Die Standortsbewertung der biologischen Aktivität von Böden über Ermittlung der Bodenatmung und der zellulolytischen Aktivität. Z Pflanzenernähr Bodenkd 153:261–269

    Google Scholar 

  • Blume HP, Beyer L, Friedrich F (1991) Correlation between the microbial activity, and the water, air, temperature and nutrient status of different soils under different use. In: Esser G, Overdieck D (eds) Facets of modern ecology. Elsevier, Amsterdam Oxford Nex York, pp 321–346

    Google Scholar 

  • Buyanovski GA, Wagner GH, Gantzer CG (1986) Soil respiration in a winter wheat ecosystem. Soil Sci Soc Am J 50:338–344

    Google Scholar 

  • Curry J (1986) Effects of management on soil decomposers and decomposition processes in grasslands and croplands. In: Mitchell MJ, Nakas JP (eds) Microfloral and-faunal interactions is natural and agro-ecosystems. Nijhoff and Junk Publishers, Dordrecht, pp 349–398

    Google Scholar 

  • Edwards NT (1975) Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Sci Soc Am Proc 39:361–365

    Google Scholar 

  • Franko U (1984) Einfluss von Bodentemperatur, Bodenfeuchtigkeit und Gehalt des Bodens an organischer Substanz auf die C-Mineralisierung im Freiland. Arch Acker Pflanzenbau Bodenkd 28:591–593

    Google Scholar 

  • Freytag HE, Jäger E, Tittelbach F (1979) Messung der Mineralisierung organischer Substanzen im Boden durch akkumulative CO2-Bestimmung unter natürlichen Bedingungen. Arch Acker Pflanzenbau Bodenkd 29:15–21

    Google Scholar 

  • Friedrich F (1979) Humusmetabolik und Wärmedynamik zweier Bodenschaften der Berliner Forsten, Ph.D. Thesis, University of Berlin, Germany

  • Grahammer K, Jawson MD, Skopp J (1991): Day and night soil respiration from grassland. Soil Biol Biochem 23:77–82

    Google Scholar 

  • Haber W (1958) ökologische Untersuchungen der Bodenatmung. Flora 146:109–157

    Google Scholar 

  • Lundegardh H (1924) Der Kreislauf der Kohlensäure in der Natur. Fischer, Jena

    Google Scholar 

  • Peters U (1990) Nutzungseinfluß auf die Stoffdynamik schleswig-holsteinischer Böden-Wasser-, Luft-, Nähr-und Schadstoffdynamik. Schriften Inst Pflanzenernähr Bodenkd, Universität Kiel 8

  • Smith MS, Rice CW (1986) The role of microorganisms in the soil nitrogen cycle. In: Mitchell MJ, Nakas JP (eds) Microfloral and faunal interactions in natural and agro-ecosystems. Nijhoff and Junk Publishers. Dordrecht, pp 245–284

    Google Scholar 

  • Smucker AJM, Safir GR (1986) Root and soil microbial interactions which influence the availability of photoassimilate carbon in the rhizosphere. In: Mittchell MJ, Nakas JP (eds) Microfloral and faunal interactions in natural and agro-ecosystems. Nijhoff and Junk Publishers, Dordrecth, pp 203–244

    Google Scholar 

  • Stotzky G (1974) Activity, ecology, and population dynamics of microorganisms in soil. In: Laskin AJ, Lechevalier H (eds) Microbial ecology. CRC Press, Cleveland, Ohio, pp 57–135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, L. Intersite characterization and variability of soil respiration in different arable and forest soils. Biol Fertil Soils 12, 122–126 (1991). https://doi.org/10.1007/BF00341487

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00341487

Key words

Navigation