Skip to main content
Log in

Nitrogen transformation in arable soils of North-West Germany during the cereal growing season

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In 1991, field experiments on loess (with winter wheat) and sandy soils (with summer barley) were conducted to study N dynamics in the microbial biomass and non-exchangeable NH sup+inf4 . The measurements showed a mass change in microbial N, with a maximum increase of 100 kg N ha-1 30 cm-1 from March to July in the loess soil, and a change for only 1 month (May) in the sandy soil. Plots treated with conventional levels of N fertilizer (213 kg N ha-1 on a loess soil to winter wheat and 130 kg ha-1 on the sandy soil to summer barley), reduced levels of N (83% and 62% of the conventional N application), or no N showed no consistent fertilizer N effect on microbial biomass N. From March to July, non-exchangeable NH sup+inf4 in loess soils under winter wheat decreased by 110 kg N ha-1 30 cm-1 in conventionally fertilized plots and by 200 kg N ha-1 30 cm-1 in a plot with no N fertilizer. After harvest, the pool of non-exchangeable NH sup+inf4 increased due to increasing mineral N concentrations in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez R, Santanatoglia OJ, Garcia R (1995) Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems. Biol Fertil Soils 19:227–230

    Google Scholar 

  • Bristow AW, Jarvis SC (1991) Effects of grazing and nitrogen fertilizer on the soil microbial biomass under permanent pasture. J Sci Food Agric 54:9–21

    Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  Google Scholar 

  • Fleige H, Meyer B (1975) Mineralisch fixiertes Ammonium in jungpleistozänen Sedimenten Norddeutschlands und ihren fossilen und holozänen Böden: Ein Indikator für litho- oder pedogenetische Prozesse und Herkünfte? Gött Bodenkd Ber 34:315–328

    Google Scholar 

  • Haas E, Nieder R, Richter J (1993) Temporal variability of non-exchangeable ammonium in a loess-derived luvisol. Modeling Geo-Biosphere Processes 2:163–171

    Google Scholar 

  • Harden T, Joergensen RG, Meyer B, Wolters V (1993) Mineralization of straw and formation of soil microbial biomass in a soil treated with simazine and dinoterb. Soil Biol Biochem 25:1273–1276

    Article  Google Scholar 

  • Hinman WC (1964) Fixed ammonium in some Saskatchewan soils. Can J Soil Sci 44:151–157

    Google Scholar 

  • Heisler C, Kaiser EA (1995) Influence of agricultural traffic and crop management on collembola and microbial biomass in arable soil. Biol Fertil Soils 19:159–165

    Google Scholar 

  • Insam H, Mitchell CC, Dormaar JF (1991) Relationship of soil microbial biomass and activity with fertilization practice and crop yields of three Ultisols. Soil Biol Biochem 23:459–464

    Article  Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon in the soil. Phil Trans R Soc Lond 329:361–368

    Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soils: Measurement and turnover. Soil Biochem 5:415–471

    Google Scholar 

  • Jensen B (1993) Rhizodeposition by 14CO2-pulse-labelled spring barley grown in small field plots on sandy loam. Soil Biol Biochem 25:1553–1559

    Article  Google Scholar 

  • Jensen ES, Christensen BT, Sörensen LH (1989) Mineral fixed ammonium in clay- and silt-size fractions of soils incubated with 15N-ammonium sulphate for five years. Biol Fertil Soils 8:298–302

    Article  Google Scholar 

  • Joergensen RG, Anderson TH, Wolters V (1995) Carbon and nitrogen relationships in the microbial biomass of soils in beech (Fagus sylvatica L.) forests. Biol Fertil Soils 19:141–147

    Google Scholar 

  • Kaiser EA, Müller T, Joergensen RG, Insam H, Heinemeyer O (1992) Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol Biochem 24:675–683

    Article  Google Scholar 

  • Kudeyarov VN (1981) Mobility of fixed ammonium in soil. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Ecol Bull (Stockholm) 33:281–290

  • von Lützow M, Ottow JCG (1994) Einfluß von konventioneller und biologisch-dynamischer Bewirtschaftungsweise auf die mikrobielle Biomasse und deren Stickstoff-Dynamik in Parabraunerden der Friedberger Wetterau. Z Pflanzenernaehr Bodenkd 157:359–367

    Google Scholar 

  • Martens R (1995) Current methods for measuring microbial biomass C in soil: Potentials and limitations. Biol Fertil Soils 19:87–99

    Google Scholar 

  • Mengel K, Scherer HW (1981) Release of nonexchangeable (fixed) soil ammonium under filed conditions during the growing season. Soil Sci 131:226–232

    Google Scholar 

  • Mengel K, Horn D, Tributh H (1990) Availability of interlayer ammonium as related to root vicinity and mineral type. Soil Sci 149:131–137

    Google Scholar 

  • Newman EI (1985) The rhizosphere-C sources and microbial populations. In: Fitter AH (ed) Ecological interactions in soil. Blackwell, Oxford, pp 107–121

    Google Scholar 

  • Niederbudde EA (1983) Das Tonmineral-NH4, seine Stellung zu anderen N-Bindungsformen sowie seine Bewertung für N-Immobilisierung und Mobilisierung in Böden. Kali-Briefe (Büntehof) 16:365–378

    Google Scholar 

  • Niederbudde EA, Friedrich R (1984) Einfluß von Gülle-und Mineraldüngung auf N-und K-spezifische Bodeneigenschaften einer Geschiebemergel-Braunerde. Bayer Landwirtsch Jahrb 61:781–789

    Google Scholar 

  • Okano S, Kondo H, Sawada Y (1989) Soil microbial biomass in a sasatype (Pleioblastus) grassland. Jpn J Grassland Sci 34:280–285

    Google Scholar 

  • Okano S, Sato K, Inoue K (1991) Negative relationship between microbial biomass and root amount in topsoil of a renovated grassland. Soil Sci Plant Nutr 33:373–386

    Google Scholar 

  • Paustian K, Andren O, Clarholm M, Hansson AC, Johansson G, Lagerlöf T, Lindberg R, Pettersson R, Sohlenius B (1990) Carbon and nitrogen budgets of four agro-ecosystems with annual and perennial crops, with and without N fertilization. J Appl Ecol 27:60–84

    Google Scholar 

  • Petersburgsky AV, Smirnov PM (1966) Ammonium fixation in soils of the USSR and the availability of this ion to plants. Plant and Soil 25:119–128

    Google Scholar 

  • Pruden G, Kalembasa SJ, Jenkinson DS (1985) Reduction of nitrate prior to Kjeldahl digestion. J Sci Food Agric 36:71–73

    Google Scholar 

  • Schachtschabel P (1961) Bestimmung des fixierten Ammoniums im Boden Z Pflanzenernaehr Dueng Bodenkd 93:125–136

    Google Scholar 

  • Silva JA, Bremner JM (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. Fixed ammonium. Soil Sci Soc Am Proc 30:587–593

    Google Scholar 

  • Smith SJ, Power JF, Kemper WD (1994) Fixed ammonium and nitrogen availability indexes. Soil Sci 158: 132–140

    Google Scholar 

  • Soil Science Society of America (1984) Glossary of soil science terms. Soil Sci Soc Am. Madison, Wis

    Google Scholar 

  • Vance ED, Nadkarni NM (1990) Microbial biomass and activity in canopy organic matter and the forest floor of tropical cloud forest. Soil Biol Biochem 22:677–684

    Article  Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358

    Google Scholar 

  • Weigand S, Auerswald K, Beck T (1995) Microbial biomass in agricultural topsoils after 6 years of bare fallow. Biol Fertil Soils 19: 129–134

    Google Scholar 

  • Xu JG, Juma NG (1994) Relations of shoot C, root C and root length with root-released C of two barley cultivars and the decomposition of root-released C in soil. Can J Soil Sci 74:17–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieder, R., Neugebauer, E., Willenbockel, A. et al. Nitrogen transformation in arable soils of North-West Germany during the cereal growing season. Biol Fert Soils 22, 179–183 (1996). https://doi.org/10.1007/BF00384452

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384452

Key words

Navigation