Skip to main content
Log in

Modeling of net N-mineralization with a method of heuristic self-organization (GMDH)

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

It is possible to construct models, which describe and predict the annual course of net N-mineralization in agricultural soils, using the Group Method of Data Handling (GMDH), a method of heuristic self-organization. The advantage of this method is that complex ecosystems can be modeled without knowing anything about their structure and with only very few data points. The three input variables most often selected by GMDH for the different models have been soil temperature, soil water content and ammonification potential. Other parameters, which have been measured but usually not selected by GMDH as suitable input parameter for models of net N-mineralization are: substrate-induced respiration, soil respiration, mineralization potential, and microbial biomass C and N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alef K, Kleiner D (1987) Applicability of arginine-ammonification as indicator of microbial activity in different soils. Biol Fertil Soils 5:148–151

    Google Scholar 

  • Anderson JPE (1982) Soil respiration. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbiological properties. Am Soc Agron, Soil Sci Soc Am, Madison, Wisconsin, USA

    Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbiological properties. Am Soc Agron, Soil Sci Soc Am, Madison, Wisconsin, USA

    Google Scholar 

  • Brookes PC, Landmann A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the relase of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Google Scholar 

  • Duffy J (1974) Identification of soil nitrogen transformations in an agricultural ecosystem. Doctoral dissertation, Sever Institute of Technology, Washington University, USA

  • Farlow SJ (1981) The GMDH algorithm of Ivakhnenko. The American Statistician 35:210–215

    Google Scholar 

  • Farlow SJ (1984) Self-organizing methods in modeling/GMDH type algorithms. Marcel Dekker New York

    Google Scholar 

  • Gill K, Jarvis SC, Hatch DJ (1995) Mineralization of nitrogen in long-term pasture soils: effects of management. Plant Soil 172:153–162

    Google Scholar 

  • Groot JJR, de Willigen P, Verberne ELJ (1991) Nitrogen turnover in the soil-crop system. Modelling of biological tranformations, transport of nitrogen and nitrogen use efficiency. Proceedings of a workshop held at the institute for Soil Research, Haren (Gn.), Netherland, 5–6 June 1990. Fert Res 27:141–384

  • Ivakhnenko AG (1968) The Group Method of Data Handling — a rival of the method of stochastic approximation. Sov Autom Control 13:43–55

    Google Scholar 

  • Ivakhnenko AG, Müller JA (1984) Selbstorganisation von Vorhersagemodellen. VEB Verlag Technik, Berlin

    Google Scholar 

  • Jenkinson DS (1988) Determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wallingford, pp 368–386

    Google Scholar 

  • Johnsson H, Bergström L, Jansson PE, Paustian K (1987) Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric Ecosystems Environ 18:333–356

    Google Scholar 

  • Keeney DR (1982) Nitrogen-availability indexes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbiological properties. Am Soc Agron, Soil Sci Soc Am, Madison, Wisconsin, USA

    Google Scholar 

  • Navone R (1964) Proposed method for nitrate in potable waters. J Am Water Works Assoc 56:781–783

    Google Scholar 

  • Plate E (ed) (1992) Weiherbach-Projekt ‘Prognosemodell für die Gewässerbelastung durch Stofftransport aus einem kleinen ländlichen Einzugsgebiet' Schlußbericht zur 1. Phase des BMFT-Verbundprojektes. Mitteilungen des Instituts für Hydrologie und Wasserwirtschaft der Universität Karlsruhe, Heft 41

  • Rohde A (1993) Untersuchungen und Bilanzierung der Stickstoffmineralisation in landwirtschaftlich genutzten Böden, Doctoral dissertation. Institut für Ingenieurbiologie und Biotechnologie des Abwassers, Karlsruher Berichte zur Ingenieurbiologie, Heft 32, Universität Karlsruhe

  • Stevenson FJ (ed) (1982) Nitrogen in agricultural soils. Agronomy 22, Madison, Wisconsin, USA

  • Van Veen JA, McGill WB, Hunt HW, Frissel MJ, Cole CV (1981) Simulation models of the terrestrial nitrogen cycle. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Ecol Bull (Stockholm) 33:25–48

  • Wu J, Jörgensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigationextraction automated procedure. Soil Biol Biochem 22:1167–1169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohde, A. Modeling of net N-mineralization with a method of heuristic self-organization (GMDH). Biol Fertil Soils 22, 336–341 (1996). https://doi.org/10.1007/BF00334579

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334579

Key words

Navigation